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Monte Carlo methods in computational finance

e Monte Carlo methods are highly appreciated and intensively
employed in computational finance.

o Applications like financial derivatives valuation or risk
management.
e Advantages:

Easy interpretation.

Flexibility.

Straightforward implementation.

Easily extended to multi-dimensional problems.

e The latter feature of Monte Carlo methods is a clear
advantage over other competing numerical methods. For
problems of more than five dimensions, Monte Carlo method
is the only possible choice.

e The main drawback is the rather poor balance between
computational cost and accuracy.
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Financial derivatives valuation

e One of the main areas in quantitative finance.

e A derivative is a contract between two or more parties based
on one asset or more assets. Its value is determined by
fluctuations in the underlying asset.

e Mathematically, the underlying financial assets are modelled
by means of stochastic processes and Stochastic Differential
Equations (SDEs).

e The derivative price can be represented by the solution of a
partial differential equation (PDE) via [té's lemma.

e Due to the celebrated Feynman-Kac theorem, the solution of
many PDEs appearing in derivative valuation can be written
in terms of a probabilistic representation.

e The associated risk neutral asset price density function plays
an important role.
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Feynman-Kac theorem

Theorem (Feynman-Kac)

Let V(t,S) be a sufficiently differentiable function of time t and stock price
S(t). Suppose that V/(t,S) satisfies the following PDE, with drift term,
u(t,S), volatility term, o(t,S), and r the risk-free rate:

8V %
8t (t S)— +— (t S)ﬁ -rV = 0

with final condition h(T,S). The solution for V(t,S) at time to < T is then

V(to,S) = E° [ TTOh(T, $)|F(10)],

where the expectation is taken under measure QQ, with respect to the process:

ds(t) = p(t, S)dt + o(t, S)AW(t), for t>to.

e The expectation, written in integral form, results in the
risk-neutral valuation formula,

V(t0,5) =<7 [ W(T.y)f(yIF (t0))dy.

with () the density of the underlying process. 4/
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Monte Carlo method

¢ Monte Carlo methods are numerical techniques to evaluate
integrals, based on the analogy between probability and
volume.

e Suppose we need to compute an integral

1= [ g(aax,

¢ Independent and identically distributed samples in C,
X1, X0, ..., Xp.

e The definition a Monte Carlo estimator is

_ 1w
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Monte Carlo method

e If g is integrable over C, by the strong law of the large
numbers,

I,>1 as n— 00,
with probability one.

e Furthermore, if g is square integrable, we can define

Sg = \//; (g(x) - 1)?dx

o By the central limit theorem, the error of the Monte Carlo
estimate / —/ is assumed normally distributed with mean 0
and standard deviation sg/\/n.

o Therefore, the order of convergence of the plain Monte Carlo

method is O(1/\/n).
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Monte Carlo method

E[(T, )] ~ 3 32 h(S:(T))

Sa(T)
_ Sy(T)
4 S3(T)
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Monte Carlo method: What if...?7

e The required samples cannot be generated exactly?
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Monte Carlo method: What if...?7

e The required samples cannot be generated exactly?
¢ You are interested not only in the expectation but also in the
whole distribution? Or in the tails?
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Monte Carlo method: What if...?7

e The required samples cannot be generated exactly?

¢ You are interested not only in the expectation but also in the
whole distribution? Or in the tails?

e Also conditional expectations need to be computed at generic
time intervals and not only at the final time?

E[V (tiv1, S)[S (%)

Su(T)
= S51(T)
4 J/\N\Af\lw S3(T)

wa\m

S,(T)
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Monte Carlo method: What if...?7

e The required samples cannot be generated exactly?

¢ You are interested not only in the expectation but also in the
whole distribution? Or in the tails?

e Also conditional expectations need to be computed at generic
time intervals and not only at the final time?

e The problem is multi-dimensional?

5(t)
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Monte Carlo method: What if...?7

e The required samples cannot be generated exactly?

e You are interested not only in the expectation but also in the
whole distribution? Or in the tails?

e Also conditional expectations need to be computed at generic
time intervals and not only at the final time?

e The problem is multi-dimensional?

e You want to handle this issues efficiently, i.e. achieving a
good balance between accuracy and computational cost?
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Monte Carlo method: What if...?7

e The required samples cannot be generated exactly?

e You are interested not only in the expectation but also in the
whole distribution? Or in the tails?

e Also conditional expectations need to be computed at generic
time intervals and not only at the final time?

e The problem is multi-dimensional?
e You want to handle this issues efficiently, i.e. achieving a
good balance between accuracy and computational cost?

e ANSWER: Combine Monte Carlo methods with other
mathematical or computational techniques — Hybrid solutions.
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Monte Carlo method: What if...?7

e The required samples cannot be generated exactly?

e You are interested not only in the expectation but also in the
whole distribution? Or in the tails?

e Also conditional expectations need to be computed at generic
time intervals and not only at the final time?

e The problem is multi-dimensional?

¢ You want to handle this issues efficiently, i.e. achieving a
good balance between accuracy and computational cost?

e ANSWER: Combine Monte Carlo methods with other
mathematical or computational techniques — Hybrid solutions.

¢ And you can do a PhD in The Netherlands, apply hybrid
solutions to particular situations in finance while meeting
many interesting people.
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“Exact” Monte Carlo simulation of the SABR model

The formal definition of the SABR model reads

dS(t) = o(t)SP(t)dWs(t), S(0) = Spexp (rT),
do(t) = ac(t)dW,(t), a(0) = op.

S(t) = §(t)_exp (r(T -1t)) is the forward price of the
underlying S(t), with r an interest rate, Sp the spot price and
T the maturity.

o(t) is the stochastic volatility.

We(t) and W, (t) are two correlated Brownian motions.
SABR parameters:

e The volatility of the volatility, o > 0.
e The CEV elasticity, 0 < 8 < 1.
o The correlation coefficient, p (Wr W, = pt).
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“Exact” Monte Carlo simulation of the SABR model

o Simulation of the volatility, o(t)|o(s):

o(t) ~ o (s) exp (avi/c,(t) _ %az(t— s)) .

Simulation of the integrated variance, [ 02(z)dz|o(t),o(s).

Simulation of the asset, S(t)|S(s), [, ?(z)dz,o(t),o(s).

The conditional integrated variance is a challenging part.

o We propose a one! and multiple? time-step simulation:

e Approximate the conditional distribution by using Fourier
techniques and copulas.

e Marginal distribution based on a Fourier inversion method.

o Conditional distribution based on copulas.

¢ Improvements in performance and efficiency.

1A, Leitao, L. A. Grzelak, and C. W. Oosterlee (2017a). “On a one time-step Monte Carlo simulation approach
of the SABR model: application to European options”. n: Applied Mathematics and Computation 293
pp. 461-479. 1ssN: 0096-3003. poI: http://dx.doi.org/10.1016/j.amc.2016.08.030

2A. Leitao, L. A. Grzelak, and C. W. Oosterlee (2017b). “On an efficient multiple time step Monte Carlo
simulation of the SABR model”. [n: Quantitative Finance. Dol 10.1080/14697688 . 2017 . 1301676, eprint:
http://dx.doi.org/10.1080/14697688.2017.1301676
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The data-driven COS method

e We aim to recover closed-form expressions for the density and
distribution functions given the samples.

o We extend the well-known COS method to the cases when the
characteristic function is not available as, for example, the
SABR model.

e We base our approach in the density estimation problem in
the framework of the so-called Statistical learning theory.

e We exploit the connection between orthogonal series
estimators and the COS method.

o Chapter 4 of the thesis and submitted for publication.
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Applications of the data-driven COS method

o Particularly useful for risk management, where not only the
expectation but also the extreme cases need to be consider.

* As the method is based on data (samples), it is more generally
applicable.
e Some applications:
o Efficient computation of the sensitivities of a financial
derivative, commonly known as Greeks.

o Efficient computation of risk measures like Value-at-Risk
(VaR) and Expected Shortfall (ES).
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GPU acceleration of SGBM

e SGBM is a method to price multi-dimensional early-exercise
derivatives.
o Early-exercise basket options:

A Q4,.(St,.) = Di, . E [Vi,, 1 (St,11)ISt,]
max(h(Sy,,), Q. (St..)) max(h(St),0)

Sd

Sl

'

to tm T

e We aim to increase the problem dimension drastically.
o We propose? the parallelization of the method.
e General-Purpose computing on Graphics Processing Units

3A. Leitao and C. W. Oosterlee (2015). “GPU Acceleration of the Stochastic Grid Bundling Method for
Early-Exercise options”. In: International Journal of Computer Mathematics 92.12, pp. 2433-2454. DOI

10.1080/00207160.2015.1067689
z
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GPU acceleration of SGBM

e Parallel strategy: two parallelization stages:
e Forward: Monte Carlo simulation.
e Backward: Bundles — Opportunity of parallelization.

¢ Novelty in early-exercise option pricing methods.
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» Very high-dimensional problems (up to 50D) can be efficiently
and accurately treated.

e Our GPU parallel version of the SGBM is 100 times faster
than the sequential version.
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