Pricing Early-exercise options GPU Acceleration of SGBM method Delft University of Technology - Centrum Wiskunde & Informatica

Álvaro Leitao Rodríguez and Cornelis W. Oosterlee Lausanne - December 4, 2016

Outline

1 Definitions

- 2 Basket Bermudan Options
- **3** Stochastic Grid Bundling Method
- 4 Parallel GPU Implementation
- **5** Results

6 Conclusions

Definitions

Option

A contract that offers the buyer the right, but not the obligation, to buy (call) or sell (put) a financial asset at an agreed-upon price (the strike price) during a certain period of time or on a specific date (exercise date). Investopedia.

Option price

The fair value to enter in the option contract. In other words, the (discounted) expected value of the contract.

$$V_t = D_t \mathbb{E}\left[f(S_t)\right]$$

where f is the *payoff* function, S the underlying asset, t the exercise time and D_t the discount factor.

tUDelft

Definitions - cont.

Pricing techniques

- Stochastic process, S_t.
- Simulation: Monte Carlo method.
- PDEs: Feynman-Kac theorem.

Types of options - Exercise time

- European: End of the contract, t = T.
- American: Anytime, $t \in [0, T]$.
- Bermudan: Some predefined times, $t \in \{t1, \ldots, t_M\}$
- Many others: Asian, barrier, ...

Definitions - cont.

Early-exercise option price

• American:

$$V_t = \sup_{t \in [0,T]} D_t \mathbb{E}\left[f(S_t)\right].$$

• Bermudan:

$$V_t = \sup_{t \in \{t1,\ldots,t_M\}} D_t \mathbb{E}\left[f(S_t)\right].$$

Pricing early-exercise options

- PDEs: Hamilton-Jacobi-Bellman equation.
- Simulation:
 - Least-squares method (LSM), Longstaff and Schwartz.
 - Stochastic Grid Bundling method (SGBM) [JO15].

TUDelft

A. Leitao & Kees Oosterlee (TUD & CWI)

4 🗆 🕨 4 🗇 🕨

Basket Bermudan Options

- Right to exercise at a set of times:
 - $t\in\{t_0=0,\ldots,t_m,\ldots,t_M=T\}.$
- *d*-dimensional underlying process: $\mathbf{S}_t = (S_t^1, \dots, S_t^d) \in \mathbb{R}^d$.
- Intrinsic value of the option: $h_t := h(\mathbf{S}_t)$.
- The value of the option at the terminal time T:

$$V_T(\mathbf{S}_T) = f(\mathbf{S}_T) = \max(h(\mathbf{S}_T), 0).$$

• The conditional continuation value Q_{t_m} , i.e. the discounted expected payoff at time t_m :

$$Q_{t_m}(\mathsf{S}_{t_m}) = D_{t_m} \mathbb{E}\left[V_{t_{m+1}}(\mathsf{S}_{t_{m+1}})|\mathsf{S}_{t_m}
ight].$$

• The Bermudan option value at time t_m and state **S**_{tm}:

$$V_{t_m}(\mathbf{S}_{t_m}) = f(\mathbf{S}_T) = \max(h(\mathbf{S}_{t_m}), Q_{t_m}(\mathbf{S}_{t_m})).$$

• Value of the option at the initial state \mathbf{S}_{t_0} , i.e. $V_{t_0}(\mathbf{S}_{t_0})$.

4 1 ■Delft

< • • • • <u>- - -</u>

Basket Bermudan options scheme

Figure: d-dimensional Bermudan option

Ť∪Delft			
		· · · · · · · · · · · · · · · · · · ·	৩১৫
A. Leitao & Kees Oosterlee (TUD & CWI)	SGBM on GPU	Lausanne - December 4, 2016	7 / 28

Stochastic Grid Bundling Method

- Dynamic programming approach.
- Simulation and regression-based method.
- Forward in time: Monte Carlo simulation.
- Backward in time: Early-exercise policy computation.
- Step I: Generation of stochastic grid points

$$\{S_{t_0}(n), \ldots, S_{t_M}(n)\}, n = 1, \ldots, N.$$

• Step II: Option value at terminal time $t_M = T$

$$V_{t_M}(\mathbf{S}_{t_M}) = \max(h(\mathbf{S}_{t_M}), 0).$$

Stochastic Grid Bundling Method (II)

- Backward in time, $t_m, m \leq M$.
- Step III: Bundling into ν non-overlapping sets or partitions

$$\mathcal{B}_{t_{m-1}}(1),\ldots,\mathcal{B}_{t_{m-1}}(\nu)$$

• Step IV: Parameterizing the option values

$$Z(\mathbf{S}_{t_m}, \alpha_{t_m}^{\beta}) \approx V_{t_m}(\mathbf{S}_{t_m}).$$

Step V: Computing the continuation and option values at t_{m-1}

$$\widehat{Q}_{t_{m-1}}(\mathsf{S}_{t_{m-1}}(n)) = \mathbb{E}[Z(\mathsf{S}_{t_m}, lpha_{t_m}^eta)|\mathsf{S}_{t_{m-1}}(n)]$$

The option value is then given by:

$$\widehat{V}_{t_{m-1}}(\mathbf{S}_{t_{m-1}}(n)) = \max(h(\mathbf{S}_{t_{m-1}}(n)), \widehat{Q}_{t_{m-1}}(\mathbf{S}_{t_{m-1}}(n))).$$

A. Leitao & Kees Oosterlee (TUD & CWI)

TUDelft

< <p>A < </p>

Bundling

- Original: Iterative process (K-means clustering).
- Problems: Too expensive (time and memory) and distribution.
- New technique: Equal-partitioning. Efficient for parallelization.
- Two stages: sorting and splitting.

Parametrizing the option value

• Basis functions
$$\phi_1, \phi_2, \ldots, \phi_K$$
.

• In our case, $Z\left(\mathbf{S}_{t_m}, \alpha_{t_m}^{\beta}\right)$ depends on \mathbf{S}_{t_m} only through $\phi_k(\mathbf{S}_{t_m})$:

$$Z\left(\mathbf{S}_{t_m},\alpha_{t_m}^{\beta}\right) = \sum_{k=1}^{K} \alpha_{t_m}^{\beta}(k)\phi_k(\mathbf{S}_{t_m}).$$

- Computation of $\alpha^{\beta}_{t_m}$ (or $\widehat{\alpha}^{\beta}_{t_m}$) by least squares regression.
- The $\alpha^{\beta}_{t_m}$ determines the early-exercise policy.
- The continuation value:

$$\begin{split} \widehat{\mathcal{Q}}_{t_{m-1}}(\mathbf{S}_{t_{m-1}}(n)) &= D_{t_{m-1}} \mathbb{E}\left[\left(\sum_{k=1}^{K} \widehat{\alpha}_{t_m}^{\beta}(k) \phi_k(\mathbf{S}_{t_m})\right) | \mathbf{S}_{t_{m-1}}\right] \\ &= D_{t_{m-1}} \sum_{k=1}^{K} \widehat{\alpha}_{t_m}^{\beta}(k) \mathbb{E}\left[\phi_k(\mathbf{S}_{t_m}) | \mathbf{S}_{t_{m-1}}\right]. \end{split}$$

A. Leitao & Kees Oosterlee (TUD & CWI)

TUDelft

Basis functions

d.

- Choosing ϕ_k : the expectations $\mathbb{E}\left[\phi_k(\mathbf{S}_{t_m})|\mathbf{S}_{t_{m-1}}\right]$ should be easy to calculate.
- The intrinsic value of the option, $h(\cdot)$, is usually an important and useful basis function. For example:
 - Geometric basket Bermudan:

$$m(\mathbf{S}_t) = \left(\prod_{\delta=1}^d S_t^\delta\right)^{rac{1}{d}}$$

• Arithmetic basket Bermudan:

$$h(\mathbf{S}_t) = rac{1}{d} \sum_{\delta=1}^d S_{t_m}^{\delta}$$

• For **S**_t following a GBM: expectations analytically available.

Ť∪Delft			
		(中) (문) (문) (문) (문) (문)	$\mathcal{O} \mathcal{Q} \mathcal{O}$
A. Leitao & Kees Oosterlee (TUD & CWI)	SGBM on GPU	Lausanne - December 4, 2016	12 / 28

Estimating the option value

- SGBM has been developed as *duality-based method*.
- Provide two estimators (confidence interval).
- Direct estimator (high-biased estimation):

$$egin{aligned} \widehat{\mathcal{V}}_{t_{m-1}}(\mathbf{S}_{t_{m-1}}(n)) &= \max\left(h\left(\mathbf{S}_{t_{m-1}}(n)
ight), \widehat{Q}_{t_{m-1}}\left(\mathbf{S}_{t_{m-1}}(n)
ight)
ight), \ \mathbb{E}[\widehat{\mathcal{V}}_{t_0}(\mathbf{S}_{t_0})] &= rac{1}{N}\sum_{n=1}^N \widehat{\mathcal{V}}_{t_0}(\mathbf{S}_{t_0}(n)). \end{aligned}$$

• Path estimator (low-biased estimation):

$$\begin{aligned} \widehat{\tau}^*\left(\mathbf{S}(n)\right) &= \min\{t_m : h\left(\mathbf{S}_{t_m}(n)\right) \ge \widehat{Q}_{t_m}\left(\mathbf{S}_{t_m}(n)\right), \ m = 1, \dots, M\},\\ v(n) &= h\left(\mathbf{S}_{\widehat{\tau}^*\left(\mathbf{S}(n)\right)}\right),\\ \underline{V}_{t_0}(\mathbf{S}_{t_0}) &= \lim_{N_{\mathrm{L}}} \frac{1}{N_{\mathrm{L}}} \sum_{n=1}^{N_{\mathrm{L}}} v(n). \end{aligned}$$

TUDelft

< □ ▶ < 一型

Parallel SGBM on GPU

- NVIDIA CUDA platform.
- Parallel strategy: two parallelization stages:
 - Forward: Monte Carlo simulation.
 - Backward: Bundles \rightarrow Oportunity of parallelization.
- Novelty in early-exercise option pricing methods.
- Two implementations \rightarrow K-means vs. Equal-partitioning:
 - K-means: sequential parts.
 - K-means: transfers between CPU and GPU cannot be avoided.
 - K-means: all data need to be stored.
 - K-means: Load-balancing.
 - Equal-partitioning: fully parallelizable.
 - Equal-partitioning: No transfers.
 - Equal-partitioning: efficient memory use.

Parallel SGBM on GPU - Forward in time

- One GPU thread per Monte Carlo simulation.
- Random numbers "on the fly": cuRAND library.
- Compute intermediate results:
 - Expectations.
 - Intrinsic value of the option.
 - Equal-partitioning: sorting criterion calculations.
- Intermediate results in the registers: fast memory access.
- Original bundling: all the data still necessary.

Parallel SGBM on GPU - Forward in time

TUDelft

A. Leitao & Kees Oosterlee (TUD & CWI)

SGBM on GPI

Lausanne - December 4, 201

< □ ▶ < 一型

016 16/2

Parallel SGBM on GPU - Backward in time

- One parallelization stage per exercise time step.
- Sort w.r.t bundles: efficient memory access.
- Parallelization in bundles.
- Each bundle calculations (option value and early-exercise policy) in parallel.
- All GPU threads collaborate in order to compute the continuation value.

Parallel SGBM on GPU - Backward in time

TUDelft

A. Leitao	Kees Oosterlee	(TUD & CWI)
, Loitao .		

Lausanne - December 4, 201

Parallel SGBM on GPU - Backward in time

TUDelft

A. Leitao & Kees Oosterlee (TUD & CWI)

SGBM on GP

Lausanne - December 4, 2010

▲ □ ▶ ▲ 倚

, 2016 19 / 2

Results

• Accelerator Island system of Cartesius Supercomputer.

- Intel Xeon E5-2450 v2.
- NVIDIA Tesla K40m.
- C-compiler: GCC 4.4.7.
- CUDA version: 5.5.
- Geometric and arithmetic basket Bermudan put options:

$$\mathbf{S}_{t_0} = (40, \dots, 40) \in \mathbb{R}^d, \ X = 40, \ r_t = 0.06, \\ \sigma = (0.2, \dots, 0.2) \in \mathbb{R}^d, \ \rho_{ij} = 0.25, \ T = 1 \text{ and } M = 10.$$

- Basis functions: K = 3.
- Multi-dimensional Geometric Brownian Motion.
- Euler discretization, $\delta t = T/M$.

< □ ▶ < 一型

Equal-partitioning: convergence test

Figure: Convergence with equal-partitioning bundling technique. Test configuration: $N = 2^{18}$ and $\Delta t = T/M$.

TUDelft

A. Leitao & Kees Oosterlee (TUD & CWI)

- E - N Lausanne - December 4, 2016

< • > < < > >

Speedup

Geometric basket Bermudan option						
		k-means		equ	ial-partitio	ning
	<i>d</i> = 5	d = 10	d = 15	d = 5	d = 10	d = 15
С	604.13	1155.63	1718.36	303.26	501.99	716.57
CUDA	35.26	112.70	259.03	8.29	9.28	10.14
Speedup	17.13	10.25	6.63	36.58	54.09	70.67
Arithmetic basket Bermudan option						
		k-means		equ	ial-partitio	ning
	<i>d</i> = 5	d = 10	d = 15	d = 5	d = 10	<i>d</i> = 15
С	591.91	1332.68	2236.93	256.05	600.09	1143.06
CUDA	34.62	126.69	263.62	8.02	11.23	15.73
Speedup	17.10	10.52	8.48	31.93	53.44	72.67

Table: SGBM total time (s) for the C and CUDA versions. Test configuration: $N = 2^{22}$, $\Delta t = T/M$ and $\nu = 2^{10}$.

TUDelft

A. Leitao & Kees Oosterlee (TUD & CWI)

Speedup - High dimensions

Geometric basket Bermudan option						
		$ u = 2^{10} $			$\nu = 2^{14}$	
	<i>d</i> = 30	<i>d</i> = 40	<i>d</i> = 50	<i>d</i> = 30	<i>d</i> = 40	<i>d</i> = 50
С	337.61	476.16	620.11	337.06	475.12	618.98
CUDA	4.65	6.18	8.08	4.71	6.26	8.16
Speedup	72.60	77.05	76.75	71.56	75.90	75.85
Arithmetic basket Bermudan option						
		$ u = 2^{10} $			$\nu = 2^{14}$	
	<i>d</i> = 30	<i>d</i> = 40	<i>d</i> = 50	<i>d</i> = 30	<i>d</i> = 40	<i>d</i> = 50
С	993.96	1723.79	2631.95	992.29	1724.60	2631.43
CUDA	11.14	17.88	26.99	11.20	17.94	27.07
Speedup	89.22	96.41	97.51	88.60	96.13	97.21

Table: SGBM total time (s) for a high-dimensional problem with equal-partitioning. Test configuration: $N = 2^{20}$ and $\Delta t = T/M$.

TUDelft

A. Leitao & Kees Oosterlee (TUD & CWI)

Conclusions

- Efficient parallel GPU implementation.
- Extend the SGBM's applicability: Increasing dimensionality.
- New bundling technique.
- Future work:
 - Explore the new CUDA 7 features: cuSOLVER (QR factorization).
 - CVA calculations.

References

Shashi Jain and Cornelis W. Oosterlee.

The Stochastic Grid Bundling Method: Efficient pricing of Bermudan options and their Greeks.

Applied Mathematics and Computation, 269:412–431, 2015.

Álvaro Leitao and Cornelis W. Oosterlee. GPU Acceleration of the Stochastic Grid Bundling Method for Early-Exercise options.

International Journal of Computer Mathematics, 92(12):2433–2454, 2015.

Acknowledgements

Thank you for your attention

A. Leitao & Kees Oosterlee (TUD & CWI)

TUDelft

SGBM on GPI

Lausanne - December 4, 2016

< □ ▶ < 合

Appendix

• Geo. basket Bermudan option - Basis functions:

$$\phi_k(\mathbf{S}_{t_m}) = \left(\left(\prod_{\delta=1}^d S_{t_m}^\delta\right)^{\frac{1}{d}} \right)^{k-1}, \ k = 1, \dots, K,$$

• The expectation can directly be computed as:

$$\mathbb{E}\left[\phi_k(\mathbf{S}_{t_m})|\mathbf{S}_{t_{m-1}}(n)\right] = \left(P_{t_{m-1}}(n)e^{\left(\bar{\mu}+\frac{(k-1)\bar{\sigma}^2}{2}\right)\Delta t}\right)^{k-1},$$

where,

$$P_{t_{m-1}}(n) = \left(\prod_{\delta=1}^{d} S_{t_{m-1}}^{\delta}(n)\right)^{\frac{1}{d}}, \ \bar{\mu} = \frac{1}{d} \sum_{\delta=1}^{d} \left(r - q_{\delta} - \frac{\sigma_{\delta}^{2}}{2}\right), \ \bar{\sigma}^{2} = \frac{1}{d^{2}} \sum_{p=1}^{d} \left(\sum_{q=1}^{d} C_{pq}^{2}\right)^{2}$$

tuDelft

A. Leitao & Kees Oosterlee (TUD & CWI)

Lausanne - December 4, 2016

Appendix

• Arith. basket Bermudan option - Basis functions:

$$\phi_k(\mathbf{S}_{t_m}) = \left(\frac{1}{d}\sum_{\delta=1}^d S_{t_m}^\delta\right)^{k-1}, k = 1, \dots, K.,$$

 The summation can be expressed as a linear combination of the products:

$$\left(\sum_{\delta=1}^{d} S_{t_m}^{\delta}\right)^k = \sum_{k_1+k_2+\dots+k_d=k} \binom{k}{k_1,k_2,\dots,k_d} \prod_{1\leq\delta\leq d} \left(S_{t_m}^{\delta}\right)^{k_\delta},$$

• And the expression for Geometric basket option can be applied.

Ť∪Delft			
		· · · · · · · · · · · · · · · · · · ·	৩১৫
A. Leitao & Kees Oosterlee (TUD & CWI)	SGBM on GPU	Lausanne - December 4, 2016	28 / 28