Outline

1. Introduction
2. SABR model
3. Dynamic SABR model
4. SABR model applications
Introduction

- Since 70’s: Black-Scholes.
 - Standard option pricing method. Hypothesis:
 - The price follows lognormal distribution.
 - The volatility is constant.

- Models which modify the price distribution.
- Models which allow non-constant volatility.
 - Local volatility models: Dupire.
 - Stochastic volatility models: Heston or SABR.

(a) Smile
(b) Skew
Local vs. Stochastic volatility models

- LVM volatility is a function.
- Both capture smile well.
- Both can be used for pricing.
- LVM show an opposite dynamic.

- LVM problems with risk measures.
- SVM solve it. Volatility also follows a stochastic process.
SABR model

SABR model (Hagan et al. 2002)

\[dF_t = \alpha_t F_t^\beta dW_t^1, \quad F_0 = \hat{f} \]
\[d\alpha_t = \nu \alpha_t dW_t^2, \quad \alpha_0 = \alpha \]

- Forward, \(F_t = S_t e^{(r-q)(T-t)} \), where \(r \) is constant interest rate, \(q \) constant dividend yield and \(T \) maturity date.
- Volatility, \(\alpha_t \).
- \(dW_t^1 \) y \(dW_t^2 \), correlated geometric brownian motions:
 \[dW_1 dW_2 = \rho dt \]
- Initial values: \(S_0 \) y \(\alpha \).
- Model parameters: \(\alpha, \beta, \nu \) and \(\rho \).
- S-tochastic A-pha B-eta R-ho model.
SABR model - Implied volatility

\[\sigma_B(K, \hat{f}, T) = \frac{\alpha}{(K\hat{f})^{(1-\beta)/2}} \left[1 + \frac{(1-\beta)^2}{24} \ln^2 \left(\frac{\hat{f}}{K} \right) + \frac{(1-\beta)^4}{1920} \ln^4 \left(\frac{\hat{f}}{K} \right) + \cdots \right] \cdot \left(\frac{z}{x(z)} \right) \cdot \left[1 + \frac{(1-\beta)^2}{24} \frac{\alpha^2}{(K\hat{f})^{1-\beta}} + \frac{1}{4} \frac{\rho \beta \nu \alpha}{(K\hat{f})^{(1-\beta)/2}} + \frac{2 - 3 \rho^2}{24} \nu^2 \right] \cdot T + \cdots. \]

Note that the previous expression depends on the parameters \(K, \hat{f} \) and \(T \), also through the functions:

\[z = \frac{\nu}{\alpha} (K\hat{f})^{(1-\beta)/2} \ln \left(\frac{\hat{f}}{K} \right), \]

and

\[x(z) = \ln \left(\frac{\sqrt{1 - 2\rho z + z^2} + z - \rho}{1 - \rho} \right). \]
SABR model - Obloj correction (2008)

\[\sigma_B(K, \hat{f}, T) = \frac{1}{\left[1 + \frac{(1 - \beta)^2}{24} \ln^2 \left(\frac{\hat{f}}{K} \right) + \frac{(1 - \beta)^4}{1920} \ln^4 \left(\frac{\hat{f}}{K} \right) + \cdots \right]} \cdot \left(\frac{\nu \ln \left(\frac{\hat{f}}{K} \right)}{x(z)} \right) \cdot T + \cdots, \]

where the following new expression for \(z \) is considered:

\[z = \frac{\nu \left(\hat{f}^{1-\beta} - K^{1-\beta} \right)}{\alpha(1 - \beta)}, \]

and \(x(z) \) is given by the same previous expression.

- The omitted terms can be neglected.
SABR model - Approx. implied volatility

\[\sigma_B(K, \hat{f}, T) = \frac{1}{\omega} \left(1 + A_1 \ln \left(\frac{K}{\hat{f}} \right) + A_2 \ln^2 \left(\frac{K}{\hat{f}} \right) + B T \right), \]

where the coefficients \(A_1, A_2 \) and \(B \) are given by

\[A_1 = -\frac{1}{2} (1 - \beta - \rho \nu \omega), \]
\[A_2 = \frac{1}{12} \left((1 - \beta)^2 + 3((1 - \beta) - \rho \nu \omega) + (2 - 3\rho^2) \nu^2 \omega^2 \right), \]
\[B = \frac{(1 - \beta)^2}{24} \frac{1}{\omega^2} + \frac{\beta \rho \nu}{4} \frac{1}{\omega} + \frac{2 - 3\rho^2}{24} \nu^2, \]

and the value of \(\omega \) is given by

\[\omega = \frac{\hat{f}^{1-\beta}}{\alpha}. \]
(e) $\alpha > 0$, the volatility's reference level.

(f) $0 \leq \beta \leq 1$, the variance elasticity.

(g) $\nu > 0$, the volatility of the volatility.

(h) $-1 \leq \rho \leq 1$, the correlation coefficient.
The calibration process tries to obtain a set of model parameters that makes model values as close as possible to market ones, i.e.

\[V_{\text{market}}(K_j, \hat{f}, T_i) \approx V_{\text{sabr}}(K_j, \hat{f}, T_i) \]

In order to achieve this target we must follow several steps:

- Prices or volatilities.
- Representative market data.
- Error measure.
- Cost function.
- Optimization algorithm.
- Fix parameters on beforehand.
- Calibrate and compare the obtained results.
SABR model - Calibration example

(i) 3 months maturity.

(j) 6 months maturity.

(k) 12 months maturity.

(l) 24 months maturity.
Figure: Market volatility surface.
SABR model - Drawback

(a) 3 months maturity.

(b) 6 months maturity.

(c) 12 months maturity.

(d) 24 months maturity.
Dynamic SABR model

\[
dF_t = \alpha_t F_t^\beta dW_t^1, \quad F_0 = \hat{f} \\
d\alpha_t = \nu(t)\alpha_t dW_t^2, \quad \alpha_0 = \alpha
\]

- Forward, \(F_t \).
- Volatility, \(\alpha_t \).
- \(dW_t^1 \) y \(dW_t^2 \), correlated geometric brownian motions:

\[
dW_1 dW_2 = \rho(t)dt
\]

- Initial values: \(S_0 \) y \(\alpha \).
- Model parameters: \(\alpha, \beta \) and ones that \(\nu(t) \) and \(\rho(t) \) can provide.
- Approximation of implied volatility provided by Osajima (2007).
Dynamic SABR model

dynamic SABR model

\[dF_t = \alpha_t F_t^\beta dW_t^1, \quad F_0 = \hat{f} \]
\[d\alpha_t = \nu(t) \alpha_t dW_t^2, \quad \alpha_0 = \alpha \]

- Forward, \(F_t \).
- Volatility, \(\alpha_t \).
- \(dW_t^1 \) y \(dW_t^2 \), correlated geometric brownian motions:

\[dW_1 dW_2 = \rho(t) dt \]

- Inicial values: \(S_0 \) y \(\alpha \).
- Model parameters: \(\alpha, \beta \) and ones that \(\nu(t) \) and \(\rho(t) \) can provide.
- Approximation of implied volatility provided by Osajima (2007).
Dynamic SABR model - Approx. implied volatility

\[\sigma_B(K, \hat{f}, T) = \frac{1}{\omega} \left(1 + A_1(T) \ln \left(\frac{K}{\hat{f}} \right) + A_2(T) \ln^2 \left(\frac{K}{\hat{f}} \right) + B(T) T \right), \]

where

\[A_1(T) = \frac{\beta - 1}{2} + \frac{\eta_1(T) \omega}{2}, \]
\[A_2(T) = \frac{(1 - \beta)^2}{12} + \frac{1 - \beta - \eta_1(T) \omega}{4} + \frac{4 \nu_1^2(T) + 3 (\eta_2^2(T) - 3 \eta_1^2(T))}{24} \omega^2, \]
\[B(T) = \frac{1}{\omega^2} \left(\frac{(1 - \beta)^2}{24} + \frac{\omega \beta \eta_1(T)}{4} + \frac{2 \nu_2^2(T) - 3 \eta_2^2(T)}{24} \omega^2 \right), \]

with

\[\nu_1^2(T) = \frac{3}{T^3} \int_0^T (T - t)^2 \nu^2(t) dt, \quad \nu_2^2(T) = \frac{6}{T^3} \int_0^T (T - t) t \nu^2(t) dt, \]
\[\eta_1(T) = \frac{2}{T^2} \int_0^T (T - t) \nu(t) \rho(t) dt, \quad \eta_2^2(T) = \frac{12}{T^4} \int_0^T \int_0^t \left(\int_0^s \nu(u) \rho(u) du \right)^2 ds dt. \]
Dynamic SABR model - $\rho(t)$ and $\nu(t)$ functions

- $\rho(t)$ and $\nu(t)$ have to be smaller for long terms (t large) rather than for short terms (t small).

<table>
<thead>
<tr>
<th>Constant</th>
<th>Piecewise</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho(t) = \rho_0$</td>
<td>$\rho(t) = \rho_0, t \leq T_0$</td>
</tr>
<tr>
<td>$\nu(t) = \nu_0$</td>
<td>$\nu(t) = \nu_0, t \leq T_0$</td>
</tr>
<tr>
<td></td>
<td>$\alpha, \beta, \rho_0, \nu_0$, SABR model.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classical</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho(t) = \rho_0 e^{-at}$</td>
<td>$\rho(t) = (\rho_0 + q_\rho t)e^{-at} + d_\rho$</td>
</tr>
<tr>
<td>$\nu(t) = \nu_0 e^{-bt}$</td>
<td>$\nu(t) = (\nu_0 + q_\nu t)e^{-bt} + d_\nu$</td>
</tr>
<tr>
<td>$\alpha, \beta, \rho_0, \nu_0, a$ and b</td>
<td>$\alpha, \beta, \rho_0, \nu_0, a, b, d_\rho, d_\nu, q_\rho$ and q_ν.</td>
</tr>
</tbody>
</table>
Dynamic SABR model - Classical choice

\[
\nu_1^2(T) = \frac{6\nu_0^2}{(2bT)^3} \left[\frac{(2bT)^2}{2} - 2bT + 1 - e^{-2bT} \right],
\]

\[
\nu_2^2(T) = \frac{6\nu_0^2}{(2bT)^3} \left[2(e^{-2bT} - 1) + 2bT(e^{-2bT} + 1) \right],
\]

\[
\eta_1(T) = \frac{2\nu_0\rho_0}{T^2(a+b)^2} \left[e^{-(a+b)T} - (1 - (a+b)T) \right],
\]

\[
\eta_2^2(T) = \frac{3\nu_0^2\rho_0^2}{T^4(a+b)^4} \left[1 - 8e^{-(a+b)T} + \left(7 + 2(a+b)T \left(-3 + (a+b)T \right) \right) \right].
\]
Dynamic SABR model - Calibration example

(e) 3 months maturity.

(f) 6 months maturity.

(g) 12 months maturity.

(h) 24 months maturity.
SABR pricing

- Monte Carlo:
 - huge number of forward and volatility paths
 - $V(S_0, K) = D(T) \mathbb{E}(V(S_T, K))$

- Discretization schemes.
 - Euler.
 - Milstein.
 - log-Euler.
 - low-bias.

- Time step(Δt) or number of time steps.
SABR pricing - European

EURUSD – Pricing European Call Option

- 3 m Market
- 3 m Monte Carlo
- 3 m σ_{model}
- 6 m Market
- 6 m Monte Carlo
- 6 m σ_{model}
- 12 m Market
- 12 m Monte Carlo
- 12 m σ_{model}
- 24 m Market
- 24 m Monte Carlo
- 24 m σ_{model}

Price vs. strike K

Álvaro Leitao (Lecture group, CWI)
SABR pricing - Barrier

EURUSD – Pricing Barrier Call Option

- 3 months
- 6 months
- 12 months
- 24 months

strike K
Price

3 months
6 months
12 months
24 months
SABR pricing - Asian

EURUSD – Pricing Asian Call Option

- 3 months
- 6 months
- 12 months
- 24 months

strike K
Price

SABR model

Alvaro Leitao (Lecture group, CWI)
November 18, 2013 22 / 25
SABR Risk measures

- Δ risk
 \[\frac{\partial V}{\partial \hat{f}} = \frac{\partial BS}{\partial \hat{f}} + \frac{\partial BS}{\partial \sigma_B} \frac{\partial \sigma_B}{\partial \hat{f}} \]

- Vega risk
 \[\frac{\partial V}{\partial \sigma_B} = \frac{\partial BS}{\partial \sigma_B} \frac{\partial \sigma_B}{\partial \alpha} \]

- Vanna risk
 \[\frac{\partial V}{\partial \rho} = \frac{\partial BS}{\partial \sigma_B} \frac{\partial \sigma_B}{\partial \rho} \]

- Volga risk
 \[\frac{\partial V}{\partial \nu} = \frac{\partial BS}{\partial \sigma_B} \frac{\partial \sigma_B}{\partial \nu} \]
References

José Luis Fernández, Ana María Ferreiro, José Antonio García-Rodríguez, Álvaro Leitao, José Germán López-Salas, and Carlos Vázquez.
Static an dynamic SABR stochastic volatility models: Calibration and option pricing using GPUs.

Patrick S. Hagan, Deep Kumar, Andrew S. Lesniewski, and Diana E. Woodward.
Managing smile risk.

Jan Obloj.

Yasufumi Osajima.
The asymptotic expansion formula of implied volatility for dynamic SABR model and FX Hybrid model, 2007.
Questions
Thank you

Thanks

Gracias