
Python for computational finance

Alvaro Leitao Rodriguez

TU Delft - CWI

June 24, 2016

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 1 / 40

1 Why Python for computational finance?

2 QuantLib

3 Pandas

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 2 / 40

Why Python for computational finance?

Everything we have already seen so far.

Flexibility and interoperability.

Huge python community.

Widely used in financial institutions.

Many mature financial libraries available.

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 3 / 40

QuantLib

Open-source library.

It is implemented in C++.

Object-oriented paradigm.

Bindings and extensions for many languages: Python, C#, Java, Perl,
Ruby, Matlab/Octave, S-PLUS/R, Mathematica, Excel, etc.

Widely used: d-fine, Quaternion, DZ BANK, Deloitte, Banca IMI, etc.

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 4 / 40

QuantLib - Advantages

It is free!! Es gratis!! Het is gratis!!

Source code available.

Big community of programmers behind improving the library.

For researchers (us), benchmark results and performance.

Common framework.

Avoid worries about basic implementations.

Pre-build tools: Black-Scholes, Monte Carlo, PDEs, etc.

Good starting point for object-oriented concepts.

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 5 / 40

QuantLib - Disadvantages

Learning curve.

Immature official documentation: only available for C++.

Some inconsistencies between C++ and Python.

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 6 / 40

QuantLib - Python resources

QuantLib Python examples.

QuantLib Python Cookbook (June 2016) by Luigi Ballabio.

Videoblogs:
I Introduction to QuantLib (8 parts).
I The QuantLib notebooks by Luigi Ballabio.

Blogs:
I IPython notebooks – a Swiss Army Knife for Quants by Matthias

Groncki: https://ipythonquant.wordpress.com/
I QuantLib Python Tutorials With Examples by Gouthaman Balaraman:

http://gouthamanbalaraman.com/blog/quantlib-python-tutorials-with-
examples.html

QuantLib User Meeting (every year).

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 7 / 40

https://ipythonquant.wordpress.com/
http://gouthamanbalaraman.com/blog/quantlib-python-tutorials-with-examples.html
http://gouthamanbalaraman.com/blog/quantlib-python-tutorials-with-examples.html

QuantLib - Modules

Date and time calculations.

Financial instruments.

Stochastic processes.

Pricing engines.

Mathematical tools.

Many others: term structures, indexes, currencies, etc.

Webpage: http://quantlib.org/

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 8 / 40

http://quantlib.org/

QuantLib - Date

Constructors:
I Date(ndays). Integer ndays is the number of days. ndays = 0

corresponds to 31-12-1899.
I Date(day , month, year). day and year are integers. month is either an

integer or enumerate (January, . . . , December).

Date arithmetic: +,−,+ =,− =.

Define a period: Period(num, units). Number of units, num, and
units ∈ {Days,Weeks,Months,Years}.
Useful methods: weekday(), dayOfMonth(), dayOfYear(), month(),
year().

Other methods: Date.todaysDate(), minDate(), maxDate(),
isLeap(year), endOfMonth(date), isEndOfMonth(date),
nextWeekday(date, weekday), nthWeekday(n, weekday , month,
year).

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 9 / 40

QuantLib - Calendar class

Calendar: holidays, business days and weekends for different countries.

Many available: UK, Germany, United States, TARGET, etc.

Also special exchange calendars.

You can construct your own calendar.

Useful methods:
I isBusinessDay(date): checks if date is a business day.
I isHoliday(date): checks if date is a holiday.
I isEndOfMonth(date): checks if date is the end of the month.
I endOfMonth(date): returns the last business date in the month.

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 10 / 40

QuantLib - Day count

Day count conventions: Actual360, Actual365Fixed, ActualActual,
Business252, Thirty360, etc.

Useful methods: dayCount(date1, date2), yearFraction(date1, date2).

Example: /QuantLib examples/1-Date.py

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 11 / 40

QuantLib - Financial instruments

Classes defining Options, Bonds, Swaps, Swaptions, etc.

Useful methods that inherit all the subclasses:
I NPV(): returns the net present value of the instrument.
I errorEstimate(): returns the error estimate on the NPV when available.
I setPricingEngine (pricingEngine): set the pricing engine to be used.
I isExpired(): bool if the option is expired.

For Options, two main classes: OneAssetOption and
MultiAssetOption.

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 12 / 40

QuantLib - Option class

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 13 / 40

QuantLib - OneAssetOption class

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 14 / 40

QuantLib - MultiAssetOption class

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 15 / 40

QuantLib - Option class

Constructor: Option(payoff , exercise).

Enumerated type: {Call = 1,Put = −1}.
For any option, we need to define the payoff and the exercise type.

Classes Payoff and Exercise.

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 16 / 40

QuantLib - Payoff class

Focus on Striked type payoffs.

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 17 / 40

QuantLib - Exercise class

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 18 / 40

QuantLib - Exercise class

Enumerated type: {American = 0,Bermudan = 1,European = 2}
Most useful classes:

I EuropeanExercise(date): the maturity date is provided.
I AmericanExercise(inicialDate, finalDate, payoffAtExpiry): the last

argument is a boolean indicating if the payment is done immediately of
at maturity.

I BermudanExercise(dates, payoffAtExpiry) : dates is a vector of Date
objects.

Example: /QuantLib examples/2-Financial instruments.py

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 19 / 40

QuantLib - Stochastic processes

StochasticProcess class models a d-dimensional Ito process:

dSt = µ(t,St)dt + σ(t,St)dWt

It has a public class discretization to model the discretized version.

Useful methods that all the subclasses inherit:
I size(): returns the number of dimensions of the stochastic process.
I initialValues(): returns the initial values of the state variables.
I drift(t, St): returns the drift part of the equation, i.e., µ(t,St).
I diffusion(t, St): returns the drift part of the equation, i.e., σ(t,St).
I expectation(t0, S0, ∆t): returns the expectation (discrete process).
I stdDeviation(t0, S0, ∆t): returns the standard deviation (discrete

process).
I covariance(t0, S0, ∆t): returns covariance (discrete process).
I evolve(t0, S0, ∆t, ∆W): returns E[St0+∆t |S0] + σ(St0+∆t |S0)∆W .
I apply(S0, dS): returns S0 + dS .

Example: /QuantLib examples/3-Stochastic processes.py

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 20 / 40

QuantLib - StochasticProcess class

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 21 / 40

QuantLib - StochasticProcess1D class

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 22 / 40

QuantLib - Pricing engines
Compilation of classes modelling pricing engines.
Constructor: Stochastic process + engine arguments.
Grouped into several modules:

I Asian option engines.
I Barrier option engines.
I Basket option engines.
I Cap/floor engines.
I Cliquet option engines.
I Forward option engines.
I Quanto option engines.
I Swaption engines.
I Vanilla option engines.

Depending on the solution technique:
I Analytical engines.
I Monte Carlo (MC) engines.
I Binomial engines.
I Finite-Differences (FD) engines.
I Fourier Transform (FFT) engines.
I Integral engines.

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 23 / 40

QuantLib - Vanilla option engines

Analytic engines classes:
I AnalyticEuropeanEngine, AnalyticHestonEngine,

AnalyticDigitalAmericanEngine, JumpDiffusionEngine, etc.

Monte Carlo (MC) engines classes:
I MCEuropeanEngine, MCAmericanEngine, MCEuropeanHestonEngine,

MCDigitalEngine, etc.

Binomial engines classes:
I BinomialVanillaEngine.

Finite-Differences (FD) engines classes:
I FDEuropeanEngine, FDBermudanEngine, FDAmericanEngine,

FdHestonHullWhiteVanillaEngine, etc.

Fourier Transform (FFT) engines classes:
I FFTVarianceGammaEngine.

Integral engines classes:
I IntegralEngine, VarianceGammaEngine.

Example: /QuantLib examples/4-European pricing.py

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 24 / 40

QuantLib - Mathematical tools

Integration:
I TrapezoidIntegral, GaussLobattoIntegral, etc.

Solvers:
I Bisection, Newton, FiniteDifferenceNewtonSafe, etc.

Interpolation:
I LinearInterpolation, LogLinearInterpolation, CubicNaturalSpline, etc.

Matrix:
I Matrix, Array, etc.

Optimizer:
I ConjugateGradient, SteepestDescent, LevenbergMarquardt, etc.

Random numbers:
I MersenneTwisterUniformRng, BoxMullerGaussianRng, etc.

Statistical distributions:
I NormalDistribution, CumulativePoissonDistribution,

InverseCumulativeStudent, etc.

Example: /QuantLib examples/5-Math tools.py

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 25 / 40

QuantLib - Examples

Hands-on:
I /QuantLib examples/6-Heston.py
I /QuantLib examples/7-Heston calibration.py
I /QuantLib examples/8-Implied volatility.py

Extra: /QuantLib examples/9-HullWhite simulation.py

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 26 / 40

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 27 / 40

Pandas

Python tool for data manipulation and analysis.

It stands for PANel DAta.

Open-source → Free/Gratis/Gratis.

It is built on top of Numpy.

Highly optimized: expensive parts in Cython.

Very well documented.

Widely used for financial applications.

Webpage: http://pandas.pydata.org/

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 28 / 40

http://pandas.pydata.org/

Pandas - Some features

Easy handling of missing data (represented as NaN).

Size mutability: columns can be inserted and deleted.

Automatic and explicit data alignment.

Make it easy to convert Python and NumPy data structures into
Pandas objects.

Intuitive merging and joining data sets.

Flexible reshaping and pivoting of data sets.

Hierarchical labeling of axes (possible to have multiple labels per tick).

IO tools for loading data from flat files (CSV and delimited), Excel
files, databases, etc.

Time series-specific functionality.

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 29 / 40

Pandas - Resources

Documentation: http://pandas.pydata.org/pandas-docs/stable/

Many sources of information:
I Tutorials.
I Video tutorials.
I Online courses.

Book: Python for Data Analysis: Data Wrangling with Pandas,
NumPy, and IPython by Wes McKinney.

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 30 / 40

http://pandas.pydata.org/pandas-docs/stable/

Pandas

Data structures.
I Series.
I DataFrame.

Visualization.

Time series.

Data reader.

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 31 / 40

Pandas - Data structures - Series

One-dimensional indexed (labelled) structure.

Series(data, index):
I data can be a list, dictionary, numpy narray, etc.
I index is a list of labels (optional, by default 0, 1, . . .).

As narray, Series can be viewed, accessed, sliced, compared (>, ==,
etc), etc.

Series handling: max, min, sort, etc.

Statistics: mean, std, etc.

Interoperability with NumPy element-wise math operations.

Also the dictionary function: in, get, etc.

Main difference: Series automatically align the data based on the
label.

Naming the series.

Example: /Pandas examples/1-Series.py

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 32 / 40

Pandas - Data structures - DataFrame

2-dimensional indexed (labelled) data structure.

Like a Excel or SQL table.

DataFrame(data, index , columns):
I data can be a dictionary of lists, dictionaries, narrays or Series.
I data can be a list of dictionaries.
I data can be a 2D narray.
I data can be a Series object.
I index is a list of labels for rows (optional).
I columns is a list of labels for columns (optional).

The column of a DataFrame object is a Series object.

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 33 / 40

Pandas - Data structures - DataFrame

Data alignment is intrinsic: the link between labels and data can not
be broken unless done so explicitly.

Many operations for accessing, addition, selection, alignment, etc.

Interoperability with NumPy element-wise math operations.

Operations between DataFrame and Series: by default, the Series
index is aligned on the DataFrame columns (broadcasting row-wise).

Higher dimensions: Panel, Panel4D and PanelND (experimental).

Example: /Pandas examples/2-DataFrame.py

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 34 / 40

Pandas - Data structures

Viewing:
I head(n)/tail(n): returns the n first/last elements.
I index/columns: returns the index/column of the structure.
I describe(): returns statistical measures (mean, std, quantiles, etc.).

Getting/Setting:
I [’C’]: returns the column called ’C’.
I [n:m]: returns all the columns between n and m (slicing).
I loc[’r’]: returns the row called ’r’. Slicing (:) also available.
I at[’r’, ’C’]: returns the value at row ’r’ and ’C’.
I iloc[i]: same as loc[’r’] but using position i . Slicing (:) also available.
I ix[’i’]: works with indexes or positions.

Operations:
I mean(), std(), cumsum(), T, etc.
I apply(f): applies f .

Others:
I Merging: concat, join, append, etc.
I Grouping: groupby.
I Reshaping: stack/unstack, pivot table

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 35 / 40

Pandas - Visualization

Pandas provides advanced visualization tools.

Based on Matplotlib, easier to use.

Several methods: line (line plot), bar (bars), hist (histograms), box
(boxplots), kde (density), area (areas), scatter (scatter plots), hexbin
(hexagonal bins) and pie (pie plots).

The returning value is a Matplotlib Axes object.

Highly customizable (color, legends, size, orientation, scales, etc).

Other functions for special plots like Andrews curves, scatter matrix,
density plot, autocorrelation plot, bootstrap plot, etc.

Matplotlib can be also used (pandas structures act as Numpy arrays).

Example: /Pandas examples/3-Visualization.py

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 36 / 40

Pandas - Time series

Pandas is suitable tool for time series data (financial data).

Functionalities to:
I generate sequences of fixed-frequency dates.
I convert time series to a particular frequency.
I compute “relative” dates based on various non-standard time

increments.

Based on the datetime64 type of NumPy.

Nanosecond precision.

Main components: Timestamp and Period.

List of Timestamp/Period: DatetimeIndex and PeriodIndex.

Conversion from list-like structures, strings, integers, etc. into
DatetimeIndex: to datetime(list).

Used as indexes in Series and DataFrame objects.

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 37 / 40

Pandas - Time series (cont.)

Generating ranges: date range(start, periods, freq) and
bdate range(start, periods, freq).

Functionalities:
I Optimized accessing, slicing, alignment manipulations.
I Partial indexing: ’year’, ’month’, etc.
I Truncation.

Conversions between Timestamp and Period: to period and
to timestamp.

Many other functionalities: resampling, time zone handling,
DateOffsets (implicit and explicit), etc.

Click to documentation (DateOffsets).

Example: /Pandas examples/4-TimeSeries.py

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 38 / 40

http://pandas.pydata.org/pandas-docs/version/0.18.1/timeseries.html

Pandas - Data reader

Functions to extract (financial) data from Internet sources.

It returns a DataFrame object.

The downloaded data is cached: the subsequent accesses will be
faster.

Currently supported sources: Yahoo! Finance, Google Finance,
St.Louis FED (FRED), Kenneth French’s data library, World Bank
and Google Analytics.

Useful functions: DataReader(name, source, start, end) and
Options(name, source) (experimental, only Yahoo! Finance).

Specific requests to avoid the download all the data: get call data,
expirity dates, etc.

A lot of information from the World Bank (wb package): search,
download, country codes, etc.

Example: /Pandas examples/5-DataReader.py

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 39 / 40

Alvaro Leitao Rodriguez (TU Delft - CWI) Python for computational finance June 24, 2016 40 / 40

	Why Python for computational finance?
	QuantLib
	Pandas

