The data-driven COS method Application to option pricing

A.Leitao, L. Ortiz-Gracia, C. W. Oosterlee and S. M. Bohte

Delft University of Technology - Centrum Wiskunde & Informatica

UB - December 2, 2016

The ddCOS method

- (3) "Learning" densities from data
- 4 The data-driven COS (ddCOS) method

3

4 E N 4 E

- Combine the ideas behind the COS method and Monte Carlo simulation.
- Preserving the individual advantages and overcoming the particular disadvantages.
- Make the COS method more generally and directly applicable and more flexible.
- Improve the convergence of the Monte Carlo method.

A B F A B F

Definitions

Option

A contract that offers the buyer the right, but not the obligation, to buy (call) or sell (put) a financial asset at an agreed-upon price (the strike price) during a certain period of time or on a specific date (exercise date). Investopedia.

Option price

The fair value to enter in the option contract. In other words, the (discounted) expected value of the contract.

$$V_{\tau} = D_{\tau} \mathbb{E}\left[v(S(\tau))\right]$$

where $v(\cdot)$ is the *payoff* function, $S(\tau)$ the future value of an underlying asset, S(t), and D_{τ} the discount factor.

- 3

イロト イポト イヨト イヨト

Definitions - cont.

Pricing techniques

- Stochastic process, S(t): Stochastic differential equation (SDE).
- Simulation: Monte Carlo method.
- Fourier-based methods.
- PDEs: Feynman-Kac theorem.

Types of options - Exercise time

- European: End of the contract, $\tau = T$.
- Early-exercise: American($\tau \in [t, T]$) or Bermudan($\tau \in \{t1, \dots, t_M\}$).
- Many others: Asian, barrier, ...

Types of options - Payoff

- Vanilla: $[c(S(\tau) K)]^+$, call(c = 1) or put(c = -1).
- Many others: Digital, Gap, ...

The COS method

- A lot of work behind: [FO08], [FO09], etc.
- Fourier-based method to price options.
- Point of departure is risk-neutral valuation formula:

$$\mathbf{v}(x,t) = \mathrm{e}^{-r(\tau-t)} \mathbb{E}\left[\mathbf{v}(y,\tau)|x
ight] = \mathrm{e}^{-r(\tau-t)} \int_{\mathbb{R}} \mathbf{v}(y,\tau) f(y|x) \mathrm{d}y,$$

where r is the risk-free rate and f(y|x) is the density of the underlying process. Typically, we have:

$$x := \log\left(rac{S(t)}{K}
ight) \quad ext{and} \quad y := \log\left(rac{S(t+ au)}{K}
ight).$$

- f(y|x) is unknown in most of cases.
- However, characteristic function available for many models.
- Exploit the relation between the density and the characteristic function (Fourier pair).

Alvaro Leitao (CWI & TUDelft)

Pricing European options with the COS method

• For a function supported on $[0, \pi]$, the cosine series expansion reads

$$f(\theta) = \sum_{k=0}^{\infty} A_k \cdot \cos(k\theta).$$

where \sum' indicates that the first term is weighted by one-half. • Other finite interval [a, b], change of variables:

$$\theta := \pi \frac{x-a}{b-a}.$$

- How to compute the support [a, b] for a particular problem is crucial.
- The COS method relies on a *cumulant* approach.

Pricing European options with the COS method

• The cosine series expansion of f(y|x) in the support [a, b] is

$$f(y|x) = \sum_{k=0}^{\infty} A_k(x) \cdot \cos\left(k\pi \frac{y-a}{b-a}\right)$$

• The option value, v(x,t) with au = T, can be then approximated by

$$v(x,t) \approx e^{-r(T-t)} \int_a^b v(y,T) \sum_{k=0}^{\infty} A_k(x) \cos\left(k\pi \frac{y-a}{b-a}\right) \mathrm{d}y.$$

• Interchanging sum and integration, and introducing the definition

$$V_k := rac{2}{b-a} \int_a^b v(y,T) \cos\left(k\pi rac{y-a}{b-a}
ight) \mathrm{d}y,$$

an approximated pricing formula is obtained (after series truncation)

$$v(x,t) \approx \frac{1}{2}(b-a)e^{-r(T-t)}\sum_{k=0}^{N-1} A_k(x)V_k.$$

Alvaro Leitao (CWI & TUDelft)

Pricing European options with the COS method

• The $A_k(x)$ expansion coefficients are

$$A_k(x) = \frac{2}{b-a} \int_a^b f(y|x) \cos\left(k\pi \frac{y-a}{b-a}\right) \mathrm{d}y.$$

 By employing the Fourier transform properties and based on the characteristic function, φ(u; x), associated to f(y|x):

$$A_k(x) \approx \frac{2}{b-a} \mathcal{R}\left\{\phi\left(\frac{k\pi}{b-a};x\right) \cdot \exp\left(-i\frac{k\pi a}{b-a}\right)\right\}$$

• The COS pricing formula for European options

$$v(x,t) \approx e^{-r(T-t)} \sum_{k=0}^{N-1} \mathcal{R}\left\{\phi\left(\frac{k\pi}{b-a};x\right) \cdot \exp\left(-i\frac{k\pi a}{b-a}\right)\right\} V_k.$$

• The V_k coefficients are known for many types of payoffs.

Pricing Bermudan options with the COS method

- A Bermudan option can be exercised at a set of predefined dates.
- The price is computed by using the risk-neutral valuation formula.
- With *M* exercise dates $t_1 < \cdots < t_M = T$ and with $\Delta t = t_m t_{m-1}$, the pricing formula for Bermudan option then reads

$$c(x, t_{m-1}) = e^{-\Delta t} \int_{\mathbb{R}} v(y, t_m) f(y|x) dy,$$

$$v(x, t_{m-1}) = \max \left(g(x, t_{m-1}), c(x, t_{m-1}) \right),$$

applied recursively, starting in $t_m = T$ until t_2 , and followed by

$$v(x, t_0) = \mathrm{e}^{-\Delta t} \int_{\mathbb{R}} v(y, t_1) f(y|x) \mathrm{d}y.$$

• The functions v(x, t), c(x, t) and g(x, t) are the option value, the continuation value and the payoff value at time t, respectively.

Pricing Bermudan options with the COS method

 Following a similar procedure as in the case of the European options, the continuation value and the option value can be approximated as

$$c(x, t_{m-1}) \approx e^{-\Delta t} \sum_{k=0}^{N-1} \mathcal{R}\left\{\phi\left(\frac{k\pi}{b-a}; x\right) \cdot \exp\left(-i\frac{k\pi a}{b-a}\right)\right\} V_k(t_m),$$

and

$$V(x,t_0) \approx \mathrm{e}^{-\Delta t} \sum_{k=0}^{N-1} \mathcal{R}\left\{\phi\left(\frac{k\pi}{b-a};x\right)\cdot \exp\left(-i\frac{k\pi a}{b-a}\right)\right\} V_k(t_1),$$

where, again, $\phi(u; x)$ is the characteristic function.

- Pricing a Bermudan option is reduced to the computation of $V_k(t_1)$.
- The coefficients V_k at any time t_m can be defined by

$$V_k(t_m) := rac{2}{b-a} \int_a^b v(y,t_m) \cos\left(k\pi rac{y-a}{b-a}
ight) \mathrm{d}y.$$

Alvaro Leitao (CWI & TUDelft)

UB - December 2, 2016

"Learning" densities from data

- *Statistical learning theory*: deals with the problem of finding a predictive function based on data. Wikipedia.
- We follow the analysis about the problem of density estimation proposed by Vapnik in [Vap98].
- Given independent and identical distributed samples X_1, X_2, \ldots, X_n .
- By definition, density f(x) is related to the *cumulative distribution* function, F(x), by means of the expression

$$\int_{-\infty}^{x} f(y) \mathrm{d}y = F(x).$$

• F(x) can be very accurately approximated by the empirical equivalent

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \eta(x - X_i),$$

where $\eta(\cdot)$ is the step-function. Convergence $O(1/\sqrt{n})$.

Regularization approach

• The previous equation can be rewritten as a linear operator equation

$$Af = F \approx F_n,$$

where the operator $Az = \int_{-\infty}^{x} z dz$.

- Stochastic ill-posed problem. Regularization method (Vapnik).
- Given a lower semi-continuous functional W(f) such that:
 - Solution of $Af = F_n$ belongs to \mathcal{D} , the domain of definition of W(f).
 - The functional W(f) takes real non-negative values in \mathcal{D} .
 - ► The set M_c = {f : W(f) ≤ c} is compact in H (the space where the solution exits and is unique).
- Then we can construct the functional

$$R_{\gamma_n}(f,F_n) = L^2_{\mathcal{H}}(Af,F_n) + \gamma_n W(f),$$

where $L_{\mathcal{H}}$ is a metric of the space \mathcal{H} (loss function) and γ_n is the parameter of regularization satisfying that $\gamma_n \to 0$ as $n \to \infty$.

• Under these conditions, a function f_n minimizing the functional converges almost surely to the desired one.

Alvaro Leitao (CWI & TUDelft)

The regularization approach and the COS method

 Assuming f(x) belongs to the functions whose p-th derivatives belong to L₂(0, π). We consider the risk functional as the form

$$\mathsf{R}_{\gamma_n}(f, F_n) = \int_0^{\pi} \left(\int_0^x f(y) \mathrm{d}y - F_n(x) \right)^2 \mathrm{d}x + \gamma_n \int_0^{\pi} \left(f^{(p)}(x) \right)^2 \mathrm{d}x.$$

• Assuming the solution is in the form (as in the COS method)

$$f_n(heta) = \sum_{k=0}^{\infty}' \hat{A}_k \cos(k heta),$$

where $\hat{A}_0, \hat{A}_1, \dots, \hat{A}_{k-1}, \dots$ are the expansion coefficients.

• Plugging the expansion in the risk functional, it can be proved that the minimum of $R_{\gamma_n}(f_n, F_n)$ is reached when

$$\hat{A}_{k} = \frac{2}{\pi} \cdot \frac{\frac{1}{n} \sum_{i=1}^{n} \cos(k\theta_{i})}{1 + \gamma_{n} k^{2(p+1)}}, k = 0, 1, 2, \dots$$

where, again, *n* is the number of available samples.

Alvaro Leitao (CWI & TUDelft)

I

Choice of the free parameters: γ_n and p

- The choice of optimal values of γ_n and p is crucial in terms of accuracy and efficiency.
- There is no rule or procedure to obtain an optimal *p*.
- As a rule of thumb, p = 0 seems to be the most appropriate value.
- Fixing p, we rely on the computation of an optimal γ_n .

Choice of γ_n

• For the regularization parameter $\gamma_{\rm n},$ a rule that ensures asymptotic convergence

$$\gamma_n = \frac{\log \log n}{n}.$$

• But it is not the optimal value of γ_n , i.e. the one which provides the fastest convergence in practical situations.

Choice of γ_n

- Exploit the relation between the empirical and real (unknown) CDFs.
- This relation can be modeled by *statistical laws* or *statistics*: Kolmogorov-Smirnov, Anderson-Darling, Smirnov-Cramér–von Mises.
- Preferable: a measure of the distance between the $F_n(x)$ and F(x) follows a known distribution.
- We have chosen Smirnov-Cramér-von Mises(SCvM):

$$\omega^2 = n \int_{\mathbb{R}} \left(F(x) - F_n(x) \right)^2 \mathrm{d}F(x).$$

• Assume we have an approximation, F_{γ_n} (which depends on γ_n).

• An almost optimal γ_n is computed by solving the equation

$$\sum_{i=1}^{n} \left(F_{\gamma_n}(\bar{X}_i) - \frac{i - 0.5}{n} \right)^2 = m_S - \frac{i}{12n},$$

where $\bar{X}_1, \bar{X}_2, \ldots, \bar{X}_n$ is the ordered array of samples X_1, X_2, \ldots, X_n and m_S the mean of the ω^2 .

Alvaro Leitao (CWI & TUDelft)

Influence of γ_n

• To assess the impact of γ_n : Mean integrated Squared Error (MiSE):

$$\mathbb{E}\left[\|f_n - f\|_2^2\right] = \mathbb{E}\left[\int_{\mathbb{R}} \left(f_n(x) - f(x)\right)^2 \mathrm{d}x\right].$$

• A formula for the MiSE formula is derived in our context:

$$\mathsf{MiSE} = \frac{1}{n} \sum_{k=1}^{N} \frac{1}{\left(1 + \gamma_n k^{2(p+1)}\right)^2} \left(\frac{1}{2} + \frac{1}{2}A_{2k} - A_k^2\right) + \sum_{k=N+1}^{\infty} A_k^2.$$

• Two main aspects influenced γ_n : accuracy in *n* and stability in *N*.

- 3

18 / 37

イロト 不得下 イヨト イヨト

Influence of γ_n

Figure: Influence of γ_n : .

Optimal number of terms N

- Try to find a *minimum optimal* value of N.
- N considerably affects the performance.
- We wish to avoid the computation of any \hat{A}_k .
- We define a proxy for the MiSE and follow:

MiSE
$$\approx \frac{1}{n} \sum_{k=1}^{N} \frac{\frac{1}{2}}{\left(1 + \gamma_n k^{2(p+1)}\right)^2}$$

Optimal number of terms N

Data: n, γ_n $N_{min} = 5$ $N_{max} = \infty$ 18 $\epsilon = \frac{1}{\sqrt{n}}$ 16 $MiSE_{prev} = \infty$ 14 for $N = N_{min}$: N_{max} do 12 \geq $\mathsf{MiSE}_{N} = \frac{1}{n} \sum_{k=1}^{N} \frac{\frac{1}{2}}{\left(1 + \gamma_{n} k^{2(p+1)}\right)^{2}}$ 10 8 $\epsilon_N = \frac{|\mathsf{MiSE}_N - \mathsf{MiSE}_{prev}|}{|\mathsf{MiSE}_N|}$ 6 if $\epsilon_N > \epsilon$ then 4 10^{1} $| N_{op} = N$ else Break $MiSE_{prev} = MiSE_N$

Figure: Almost optimal N.

- 3

- Employ the regularization approach for PDF estimation in the COS framework.
- In both, the PDF is assumed to be in the form of a cosine series expansion.
- The minimum of the functional is in terms of the expansion coefficients.
- Take advantage of the COS machinery: pricing options.
- The samples are generated by Monte Carlo (risk-neutral measure).

The data-driven COS method - European options

- Key idea: the data-based \hat{A}_k approximates the $A_k(x)$ in COS method.
- Let assume that we have the samples $S_i(t)$.
- As in COS method, a logarithmic transformation is made

$$Y_j := \log\left(rac{S_j(T)}{K}
ight).$$

• Due to the solution is defined in $(0,\pi)$, we further transform the samples as

$$\theta_i := \pi \frac{Y_i - a}{b - a}.$$

where the quantities a and b are defined as

$$a:=\min_{1\leq j\leq n}(Y_j), \quad b:=\max_{1\leq j\leq n}(Y_j).$$

- The samples, Y_i, must intrinsically consider the dependency on x of the function-like coefficients, A_k(x).
- This is fulfilled when generated by the Monte Carlo method.

The data-driven COS method - European options

• New expression for the data-driven coefficients, \hat{A}_k :

$$\hat{A}_{k} = \frac{2}{b-a} \cdot \frac{\frac{1}{n} \sum_{i=1}^{n} \cos\left(k\pi \frac{Y_{i}-a}{b-a}\right)}{1 + \gamma_{n} k^{2(p+1)}}, k = 1, 2, \dots$$

• By substituting the $A_k(x)$ in the COS formula by the \hat{A}_k coefficients, we obtain the ddCOS pricing formula for European options

$$\hat{v}(x,t) = \frac{1}{2}(b-a)e^{-r(T-t)}\sum_{k=0}^{N-1}\hat{A}_k V_k,$$

= $e^{-r(T-t)}\sum_{k=0}^{N-1}\frac{\frac{1}{n}\sum_{i=1}^{n}\cos\left(k\pi\frac{Y_i-a}{b-a}\right)}{1+\gamma_n k^{2(p+1)}} \cdot V_k.$

Alvaro Leitao (CWI & TUDelft)

The ddCOS method vs. Monte Carlo

Figure: Convergence GBM.

Alvaro Leitao (CWI & TUDelft)

The ddCOS method

The ddCOS method vs. Monte Carlo

• With more involved models: Jump-diffusion Merton model.

Figure: Convergence Merton.

The ddCOS method vs. Monte Carlo

- Almost optimal γ_n (SCvM) does not provide better results.
- Natural question: is the ddCOS method worth to use?
- Other words: is it better in terms of computational cost?

RE	$< 10^{-1}$	$< 10^{-2}$	$< 10^{-3}$			
	GBM					
MC	$0.0095(10^3)$	$0.0147(10^5)$	$0.6721(10^7)$			
ddCOS	$0.0256(10^1)$	$0.0258(10^3)$	0.2696(10 ⁵)			
Speedup	×0.37	×0.57	×2.49			
	Merton					
MC	$0.0396(10^3)$	$0.1315(10^5)$	$13.6055(10^7)$			
ddCOS	$0.0527(10^1)$	$0.0558(10^3)$	$0.3861(10^5)$			
Speedup	×0.75	×2.36	×35.24			

Table: Time(s) vs. accuracy. In parentheses, the number of required samples, n.

27 / 37

イロト 不得下 イヨト イヨト

The ddCOS method - Pricing European options

$K(\% \text{ of } S_0)$	80%	90%	100%	110%	120%
BS	24.0784	15.4672	8.5917	4.0759	1.6600
ddCOS	24.0799	15.4730	8.6042	4.0827	1.6668
MSE	$5.7344 imes 10^{-5}$				

Table: GBM. European call, $S_0 = 100$, T = 1, r = 0.05, $\sigma = 0.15$.

$K(\% \text{ of } S_0)$	80%	90%	100%	110%	120%
Merton	62.7649	59.5454	56.5534	53.7676	51.1694
ddCOS	62.7962	59.5713	56.5689	53.7736	51.1659
MSE	$3.8782 imes 10^{-4}$				

Table: Merton. European call, $S_0 = 100$, T = 5, r = 0.1, $\sigma = 0.3$, $\lambda = 3$, $\mu_J = -0.2$, $\sigma_J = 0.2$.

イロト 不得下 イヨト イヨト

- 3

The ddCOS method - Pricing European options

$K(\% \text{ of } S_0)$	80%	90%	100%	110%	120%
MC	34.5093	26.3220	18.1347	9.9550	2.6402
ddCOS	34.5015	26.3142	18.1269	9.9473	2.6337
MSE	$2.3440 imes 10^{-6}$				

Table: CEV. European call, $S_0 = 100$, T = 2, r = 0.1, $\sigma = 0.3$, $\beta = 0.5$.

$K(\% \text{ of } S_0)$	80%	90%	100%	110%	120%
MC	23.9017	14.4483	5.6862	0.6043	0.0019
ddCOS	23.9043	14.4510	5.6900	0.6092	0.0043
MSE	$1.1685 imes10^{-5}$				

Table: SABR. European call, $S_0 = 100$, T = 1, r = 0.05, $\sigma_0 = 0.15$, $\alpha = 0.3$, $\beta = 0.8$, $\rho = -0.8$.

- 3

- Pricing Bermudan options under the ddCOS is more involved: several exercise times, *t_m*.
- The characteristic function now appears in the computation of both, the continuation value a the final option value.
- The "conditionalty" in the samples is not straightforward since the current state at t_m is conditional on the previous one at t_{m-1} (not on the initial state S_0).
- For pricing Bermudan option, the state variables x and y are defined

$$x := \log\left(\frac{S(t_{m-1})}{K}\right)$$
 and $y := \log\left(\frac{S(t_m)}{K}\right)$.

• We propose the following approximation

$$egin{aligned} &f(y|x) \stackrel{\mathrm{d}}{pprox} f(y-x) \ &\stackrel{\mathrm{d}}{=} f\left(\log\left(rac{S(t_m)}{K}
ight) - \log\left(rac{S(t_{m-1})}{K}
ight)
ight) \ &\stackrel{\mathrm{d}}{=} f\left(\log\left(rac{S(t_m)}{S(t_{m-1})}
ight)
ight) \stackrel{\mathrm{d}}{=} f\left(\log\left(rac{S(t_1)}{S(t_0)}
ight)
ight). \end{aligned}$$

where $\stackrel{\rm d}{=}$ indicates equality in the distribution sense.

 $\bullet\,$ If we consider a particular realization, x', then

$$f(y|x = x') \stackrel{\mathrm{d}}{\approx} f\left(\log\left(\frac{\mathrm{S}(\mathrm{t}_1)}{\mathrm{S}(\mathrm{t}_0)}\right)\right) + x'.$$

Alvaro Leitao (CWI & TUDelft)

• Schematic representation of the idea:

Figure: Approximation to the continuation value computation.

Alvaro Leitao (CWI & TUDelft)

The ddCOS method

UB - December 2, 2016

• According to that, we define the samples as

$$Z_j = \log\left(rac{S_j(t_1)}{S(t_0)}
ight),$$

• By applying the ddCOS method we have

$$\hat{A}_{k}(x) = \frac{\frac{1}{n} \sum_{j=1}^{n} \cos\left(k\pi \frac{(Z_{j}+x)-a}{b-a}\right)}{1 + \gamma_{n} k^{2(p+1)}}$$

• Then, the data-based expression for the continuation value

$$\hat{c}(x, t_{m-1}) = \exp(-\Delta t) \sum_{k=0}^{N-1} \hat{B}_k(x) V_k(t_m)$$

= $\exp(-\Delta t) \sum_{k=0}^{N-1} \frac{\frac{1}{n} \sum_{i=1}^{n} \cos\left(k\pi \frac{(Z_i(t_1)+x)-a}{b-a}\right)}{1+\gamma_n k^{2(p+1)}} \cdot V_k(t_m).$

Alvaro Leitao (CWI & TUDelft)

UB - December 2, 2016

The ddCOS method - Pricing Bermudan options

$K(\% \text{ of } S_0)$	80%	90%	100%	110%	120%
COS	1.6413	3.8766	7.6122	13.0919	20.3759
ddCOS	1.6400	3.8721	7.6011	13.0756	20.3730
MSE	$8.3930 imes10^{-5}$				

Table: GBM. Bermudan put, $S_0 = 100$, T = 2, r = 0.05, $\sigma = 0.2$.

$K(\% \text{ of } S_0)$	80%	90%	100%	110%	120%
COS	13.2743	17.8149	22.9726	28.7044	34.9664
ddCOS	13.1908	17.7128	22.8526	28.5668	34.8134
MSE	$1.4828 imes 10^{-2}$				

Table: Merton. Bermudan put, $S_0 = 100$, T = 2, r = 0.05, $\sigma = 0.2$, $\lambda = 3$, $\mu_J = -0.2$, $\sigma_J = 0.2$.

Conclusions

- We have combined a density estimation procedure with the COS method.
- Resulting in a simple and very efficient technique for option pricing.
- The ddCOS method improves the convergence w.r.t. Monte Carlo.
- For high accuracy, faster than Monte Carlo.
- Ongoing work:
 - Case where the use of γ_n by SCvM is justified.
 - "Variance reduction" for the ddCOS method.
 - Bermudan approximation.
 - 2D extension.

- 3

イロト 不得下 イヨト イヨト

References

Fang Fang and Cornelis W. Oosterlee.

A novel pricing method for European options based on Fourier-cosine series expansions. *SIAM Journal on Scientific Computing*, 31:826–848, November 2008.

Fang Fang and Cornelis W. Oosterlee.

Pricing early-exercise and discrete Barrier options by Fourier-cosine series expansions. *Numerische Mathematik*, 114(1):27–62, 2009.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

Suggestions, comments & questions

Thank you for your attention

Alvaro Leitao (CWI & TUDelft)

The ddCOS method

UB - December 2, 2016