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Motivation

@ Combine the ideas behind the COS method and Monte Carlo
simulation.

@ Preserving the individual advantages and overcoming the particular
disadvantages.

@ Make the COS method more generally and directly applicable and
more flexible.

@ Improve the convergence of the Monte Carlo method.
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Definitions

Option

A contract that offers the buyer the right, but not the obligation, to buy
(call) or sell (put) a financial asset at an agreed-upon price (the strike
price) during a certain period of time or on a specific date (exercise date).
Investopedia.

Option price
The fair value to enter in the option contract. In other words, the
(discounted) expected value of the contract.

V, = D.E[v(S(r))

where v(-) is the payoff function, S(7) the future value of an underlying
asset, S(t), and D; the discount factor.
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Definitions - cont.

Pricing techniques
@ Stochastic process, S(t): Stochastic differential equation (SDE).
@ Simulation: Monte Carlo method.
o Fourier-based methods.

@ PDEs: Feynman-Kac theorem.

Types of options - Exercise time
@ European: End of the contract, 7= T.
o Early-exercise: American(7 € [t, T]) or Bermudan(7 € {t1,...,tm}).

@ Many others: Asian, barrier, ...

Types of options - Payoff
e Vanilla: [¢(S(7) — K)]T, call(c = 1) or put(c = —1).
@ Many others: Digital, Gap, ...

4
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The COS method

@ A lot of work behind: [FO08], [FOQ9], etc.
@ Fourier-based method to price options.

@ Point of departure is risk-neutral valuation formula:

v(x.t) = T IE [u(y, r)x] = (0 / vy, )F(y[x)dy,
R

where r is the risk-free rate and f(y|x) is the density of the
underlying process. Typically, we have:

cton(59) gy o (S627).

e f(y|x) is unknown in most of cases.

@ However, characteristic function available for many models.

@ Exploit the relation between the density and the characteristic
function (Fourier pair).
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Pricing European options with the COS method

@ For a function supported on [0, 7], the cosine series expansion reads
F(0) = 3 Ax - cos (k).
k=0

/
where Z indicates that the first term is weighted by one-half.

@ Other finite interval [a, b], change of variables:

X —a

b—a

0.=m

@ How to compute the support [a, b] for a particular problem is crucial.

@ The COS method relies on a cumulant approach.
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Pricing European options with the COS method

@ The cosine series expansion of f(y|x) in the support [a, b] is

y—a
f(ylx) = Z Ak(x cos( b—a)'

@ The option value, v(x,t) W|th 7 =T, can be then approximated by

r(T—t)
v(x, t) / viy, T Z Ak(x) cos <k7rb >dy.

@ Interchanging sum and integration, and introducing the definition
2 b —a
Vi = —— v(y, T) cos <k7ry > dy,
a b—a
an approximated pricing formula is obtained (after series truncation)

b—a
1 Nfll
v(x.t) ~ 5 (b~ a)e T3 ™ A (x) Vi
k=0

Alvaro Leitao (CWI & TUDelft) The ddCOS method UB - December 2, 2016 8 /37



Pricing European options with the COS method

@ The Ak(x) expansion coefficients are

2 b —a
Ar(x) = b_a/ F(y|x) cos (kw[y) a) dy.
a

@ By employing the Fourier transform properties and based on the
characteristic function, ¢(u; x), associated to f(y|x):

Ak(x) =~ é?@ {qb <bk_ﬂ-a;x> - exp <ibkiaa> } .

@ The COS pricing formula for European options

N—1
~ o—r(T—1) ! km . . kma
v(x,t) ~e ;R{¢<b—a'x> exp( e Vi.

@ The Vj coefficients are known for many types of payoffs.
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Pricing Bermudan options with the COS method

@ A Bermudan option can be exercised at a set of predefined dates.
@ The price is computed by using the risk-neutral valuation formula.

o With M exercise dates t; < --- < tyy = T and with At = t,, — tm_1,
the pricing formula for Bermudan option then reads

(X, tmq) = e At v X
(x5 t-) =7 [ vy ) (y1x0dy.
v(x, tm—1) = max (g(x, tm—-1), c(x, tm—-1)) ,

applied recursively, starting in t,, = T until t,, and followed by

v(x. to) = e B¢ /R vy t)F(y[x)dy.

@ The functions v(x, t), c(x, t) and g(x, t) are the option value, the
continuation value and the payoff value at time t, respectively.
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Pricing Bermudan options with the COS method

@ Following a similar procedure as in the case of the European options,
the continuation value and the option value can be approximated as

oty = o S (o (20 (122
and
-x> - exp <—ibkiaa>} Vi(t1),

v(x, to) AtZR{ <

where, again, ¢(u; x) is the characteristic function.
@ Pricing a Bermudan option is reduced to the computation of Vj(t1).
@ The coefficients V) at any time t,, can be defined by

2 b —a
Vi(tm) == b—a/ v(y, tm) cos (kw); — a) dy.
a
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“Learning” densities from data

o Statistical learning theory: deals with the problem of finding a
predictive function based on data. Wikipedia.

@ We follow the analysis about the problem of density estimation
proposed by Vapnik in [Vap98].
@ Given independent and identical distributed samples X1, Xo, ..., X,.

e By definition, density f(x) is related to the cumulative distribution
function, F(x), by means of the expression

|ty = £,

—0o0

@ F(x) can be very accurately approximated by the empirical equivalent

Falx) = =3 mlx = X0,
i=1

where 7)(-) is the step-function. Convergence O(1/+/n).
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Regularization approach

@ The previous equation can be rewritten as a linear operator equation
Af = F = F,,

where the operator Az = [*_zdz.

@ Stochastic ill-posed problem. Regularization method (Vapnik).
@ Given a lower semi-continuous functional W(f) such that:
» Solution of Af = F, belongs to D, the domain of definition of W(f).
» The functional W(f) takes real non-negative values in D.
» The set M. = {f : W(f) < ¢} is compact in H (the space where the
solution exits and is unique).

@ Then we can construct the functional
R, (f, Fn) = L3,(Af, Fo) + va W(F),

where Ly, is a metric of the space #H (loss function) and =, is the
parameter of regularization satisfying that v, — 0 as n — oco.

@ Under these conditions, a function f,, minimizing the functional
converges almost surely to the desired one.
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The regularization approach and the COS method

@ Assuming f(x) belongs to the functions whose p-th derivatives belong
to L»(0,7). We consider the risk functional as the form

Ru(fF = [ ( | ftay - a(x))z deta [ (F000) ax.

@ Assuming the solution is in the form (as in the COS method)
f(0) = 3 Ay cos(kb),
k=0

where Ao, Al, R Ak_l, ... are the expansion coefficients.
@ Plugging the expansion in the risk functional, it can be proved that
the minimum of R, (f,, F,) is reached when
2 1370 cos(kO;)

A= 1+ v,k2(p+1) k=0,1,2,....

where, again, n is the number of available samples.
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Choice of the free parameters: v, and p

@ The choice of optimal values of v, and p is crucial in terms of
accuracy and efficiency.

@ There is no rule or procedure to obtain an optimal p.

@ As a rule of thumb, p = 0 seems to be the most appropriate value.

e Fixing p, we rely on the computation of an optimal ~,.

3 "
_p=_1
257 ~p=0 |
p=1
2} ~p=2
p=3
=15 —True |
=
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Choice of ~,

@ For the regularization parameter -y,, a rule that ensures asymptotic
convergence

_ loglogn

i

@ But it is not the optimal value of v, i.e. the one which provides the
fastest convergence in practical situations.

n

0.35 |
* * 7, rule
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\
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~ ~
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n
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Choice of ~,

@ Exploit the relation between the empirical and real (unknown) CDFs.

@ This relation can be modeled by statistical laws or statistics:
Kolmogorov-Smirnov, Anderson-Darling, Smirnov-Cramér—von Mises.

@ Preferable: a measure of the distance between the F,(x) and F(x)
follows a known distribution.

@ We have chosen Smirnov-Cramér—von Mises(SCvM):

2_n X) — X2 X).
WP = /R<F() Fu(x))? dF(x)

@ Assume we have an approximation, F,, (which depends on ~,).
@ An almost optimal 7y, is computed by solving the equation
n

_. i—05)\? i
Z(F%(Xi)— n >:m5—12n,

i=1

where X1, X5, ..., X, is the ordered array of samples X1, X2, ..., Xy
and mg the mean of the w?.
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Influence of v,

@ To assess the impact of 7,: Mean integrated Squared Error (MiSE):

[Hf—fu [/(f ) — f(x )dx].

@ A formula for the MiSE formula is derived in our context:

1 1 1 1 o0
MiSE:fZ 2<2+2A2k—Ai)+ Z AZ.

M= (14 ynk?PHD) k=N+1

@ Two main aspects influenced ~,: accuracy in n and stability in N.
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Influence of ~,
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Optimal number of terms N

@ Try to find a minimum optimal value of N.

@ NN considerably affects the performance.

@ We wish to avoid the computation of any Ay.
@ We define a proxy for the MiSE and follow:

1Y 1
MiSE ~ = > YT
n —1 (]_ + f}/nk (P+ ))
10°
—, rule
A - -7, rule - addend 1
10 w2, Tule - proxy
, —, SCWM
= 10 - -7, SCYM - addend 1
é) & A SCvM - proxy
-3
n r—_ =]
4 e —
10 .,”
.,1
o
10-5 i
0 50 100 150 200
N
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Optimal number of terms N

Data: n, v,
Nmin =5
Npmax = 00 18
e— 1
- n 16
MiSEpre, = 00 14
for N = Npin 0 Npax do 12
MiSEy = 1M 2 T
N'™ n ck=1 (e )?
 |MiSEy—MiSEprey | 8
N = [MiSEn] 6
if ey > € then 4
L Nop = N 10"
else
L Break
| MiSEpre, = MiSEy
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The data-driven COS method

@ Employ the regularization approach for PDF estimation in the COS
framework.

@ In both, the PDF is assumed to be in the form of a cosine series
expansion.

@ The minimum of the functional is in terms of the expansion
coefficients.

o Take advantage of the COS machinery: pricing options.

@ The samples are generated by Monte Carlo (risk-neutral measure).
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The data-driven COS method - European options

o Key idea: the data-based Ay approximates the A(x) in COS method.
@ Let assume that we have the samples S5;(t).
@ As in COS method, a logarithmic transformation is made

g (S0,

@ Due to the solution is defined in (0, 7), we further transform the

samples as
Y;—a

b—a’
where the quantities a and b are defined as

a:= min (Y;), b:= max(Y)).

1<j<n 1<j<n

9,‘ =T

@ The samples, Y;, must intrinsically consider the dependency on x of
the function-like coefficients, Ax(x).
@ This is fulfilled when generated by the Monte Carlo method.
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The data-driven COS method - European options

@ New expression for the data-driven coefficients, Ak:

2 A% cos (kn =
b—a 1+ y,k2p+D)

Ay =

>,k—1,2,....

e By substituting the A(x) in the COS formula by the Ay coefficients,
we obtain the ddCOS pricing formula for European options

N—-1
1 A
0(x, £) = 5(b—a)e (T A
k=0
_ —r(T—t)N_ll% j=1 08 (kﬁ?j)) V)
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The ddCOS method vs. Monte Carlo
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Figure: Convergence GBM.
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The ddCOS method vs. Monte Carlo

@ With more involved models: Jump-diffusion Merton model.
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Figure: Convergence Merton.
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The ddCOS method vs. Monte Carlo

@ Almost optimal v, (SCvM) does not provide better results.
@ Natural question: is the ddCOS method worth to use?

@ Other words: is it better in terms of computational cost?

RE <107t <1072 <1073
GBM
MC | 0.0095(10%) 0.0147(10°) 0.6721(107)
ddCOS | 0.0256(10') 0.0258(10%) 0.2696(10%)
Speedup x0.37 x0.57 x2.49
Merton
MC | 0.0396(10%) 0.1315(10°) 13.6055(10")
ddCOS | 0.0527(10') 0.0558(10%) 0.3861(10%)
Speedup x0.75 x2.36 x35.24

Table: Time(s) vs. accuracy. In parentheses, the number of required samples, n.
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The ddCOS method - Pricing European options

K(% of So) 80% 90% 100% 110% 120%

BS 24.0784 15.4672 8.5917 4.0759 1.6600

ddCOS 24.0799 15.4730 8.6042 4.0827 1.6668
MSE 5.7344 x 10~5

Table: GBM. European call, 5o =100, T =1, r =0.05, 0 = 0.15.

K (% of So) 80% 90%  100%  110%  120%
Merton 62.7649 59.5454 56.5534 53.7676 51.1694
ddCOS 62.7962 59.5713 56.5680 53.7736 51.1659

MSE 3.8782 x 10~

Table: Merton. European call, So =100, T =5, r=0.1, c = 0.3, A =3,
My = —0.2, g = 0.2.
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The ddCOS method - Pricing European options

K (% of So) 80% 90% 100%  110% 120%

MC 34.5093 26.3220 18.1347 9.9550 2.6402

ddCOS 34.5015 26.3142 18.1269 9.9473 2.6337
MSE 2.3440 x 1076

Table: CEV. European call, S =100, T =2, r =0.1, c = 0.3, 3 = 0.5.

K(% of 50)

80% 90% 100%  110%  120%

23.9017 14.4483 5.6862 0.6043 0.0019

MC
ddCOS 23.9043 14.4510 5.6900 0.6092 0.0043
MSE 1.1685 x 10~°

Table: SABR. European call, So =100, T =1, r = 0.05, 09 = 0.15, a = 0.3,

B=08 p=-08.
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The data-driven COS method - Bermudan options

@ Pricing Bermudan options under the ddCOS is more involved: several
exercise times, t,.

@ The characteristic function now appears in the computation of both,
the continuation value a the final option value.

@ The “conditionalty” in the samples is not straightforward since the
current state at t,, is conditional on the previous one at t,,,—1 (not on
the initial state Sp).

@ For pricing Bermudan option, the state variables x and y are defined

x = log <S(t;1)> and y = log (5(;”’))
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The data-driven COS method - Bermudan options

@ We propose the following approximation

F(ylx) & F(y — x)

(e () s ()
(oo (stn)) £ 7 (o ()

d . . I C
where = indicates equality in the distribution sense.

Ila

JE

o If we consider a particular realization, x/, then
d S(tl)
flylx =x %f<|o < >>—|—X'.
(vl ) 2\ S(to)
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The data-driven COS method - Bermudan options

@ Schematic representation of the idea:

Figure: Approximation to the continuation value computation.
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The data-driven COS method - Bermudan options

@ According to that, we define the samples as
5'(1“1))
Z =log | = ,
e (S(ro)
@ By applying the ddCOS method we have

1\ (Zj+x)—a
o 2 j=1C0s (kw b2

1+ 7nk2(p+1)

Ak(X) =

@ Then, the data-based expression for the continuation value

N—-1

!l A

(x, tm1) = exp(—AL) S Br(x) Vi(tm)

k=0
ML LS cos (k2812

= exp(—At) [ k2D - Vi(tm)-
k=0 n
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The ddCOS method - Pricing Bermudan options

K(% of So) | 80% 90% 100% 110% 120%
COS 1.6413 3.8766 7.6122 13.0919 20.3759
ddCOS 1.6400 3.8721 7.6011 13.0756 20.3730
MSE 8.3930 x 10~3

Table: GBM. Bermudan put, So =100, T =2, r = 0.05, 0 = 0.2.

K(% of So) | 80% 90% 100% 110% 120%
COS 13.2743 17.8149 22.9726 28.7044 34.9664
ddCOS 13.1908 17.7128 22.8526 28.5668 34.8134
MSE 1.4828 x 102

Table: Merton. Bermudan put, S =100, T =2, r =0.05, 0 = 0.2, A =3,
Hny = —0.2, o) = 0.2.
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Conclusions

We have combined a density estimation procedure with the COS
method.

Resulting in a simple and very efficient technique for option pricing.
The ddCOS method improves the convergence w.r.t. Monte Carlo.

For high accuracy, faster than Monte Carlo.

Ongoing work:
» Case where the use of v, by SCvM is justified.
» “Variance reduction” for the ddCOS method.
» Bermudan approximation.
» 2D extension.
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Suggestions, comments & questions

Thank you for your attention
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