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The COS method

Well known and established method: [FO08], [FO09], etc.

Fourier-based method to price financial options.

Starting point is risk-neutral valuation formula:

v(x , t) = e−r(T−t)E [v(y ,T )|x ] = e−r(T−t)

∫
R
v(y ,T )f (y |x)dy ,

where r is the risk-free rate and f (y |x) is the density of the
underlying process. Typically, we have:

x := log

(
S(0)

K

)
and y := log

(
S(T )

K

)
,

f (y |x) is unknown in most of cases.

However, characteristic function available for many models.

Exploit the relation between the density and the characteristic
function (Fourier pair).
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The COS method - European options

f (y |x) is approximated, on a finite interval [a, b], by a cosine series

f (y |x) =
1

b − a

(
A0 + 2

∞∑
k=1

Ak(x) · cos

(
kπ

y − a

b − a

))
,

A0 = 1, Ak(x) =

∫ b

a
f (y |x) cos

(
kπ

y − a

b − a

)
dy , k = 1, 2, . . . .

Interchanging the summation and integration and introducing the
definition

Vk :=
2

b − a

∫ b

a
v(y ,T ) cos

(
kπ

y − a

b − a

)
dy ,

we find that the option value is given by

v(x , t) ≈ e−r(T−t)

∞∑′

k=0

Ak(x)Vk ,

where ′ indicates that the first term is divided by two.
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Pricing European options with the COS method

Coefficients Ak can be computed from the ChF.

Coefficients Vk are known analytically (for many types of options).

Closed-form expressions for the option Greeks ∆ and Γ

∆ =
∂v(x , t)

∂S
=

1

S(0)

∂v(x , t)

∂x
≈ exp(−r(T − t))

∞∑′

k=0

∂Ak(x)

∂x

Vk

S(0)
,

Γ =
∂2v(x , t)

∂S2
=≈ exp(−r(T − t))

∞∑′

k=0

(
−∂Ak(x)

∂x)
+
∂2Ak(x)

∂x2)

)
Vk

S2(0)

Due to the rapid decay of the coefficients, v(x , t), ∆ and Γ can be
approximated with high accuracy by truncating to N terms.
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“Learning” densities

Statistical learning theory: deals with the problem of finding a
predictive function based on data.

We follow the analysis about the problem of density estimation
proposed by Vapnik in [Vap98].

Given independent and identically distributed samples X1,X2, . . . ,Xn.

By definition, density f (x) is related to the cumulative distribution
function, F (x), by means of the expression∫ x

−∞
f (y)dy = F (x).

Function F (x) is approximated by the empirical approximation

Fn(x) =
1

n

n∑
i=1

η(x − Xi ),

where η(·) is the step-function. Convergence O(1/
√
n).
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Regularization approach

The previous equation can be rewritten as a linear operator equation

Cf = F ≈ Fn,

where the operator Ch :=
∫ x
−∞ h(z)dz .

Stochastic ill-posed problem. Regularization method (Vapnik).
Given a lower semi-continuous functional W (f ) such that:

I Solution of Cf = Fn belongs to D, the domain of definition of W (f ).
I The functional W (f ) takes real non-negative values in D.
I The set Mc = {f : W (f ) ≤ c} is compact in H (the space where the

solution exits and is unique).

Then we can construct the functional

Rγn(f ,Fn) = L2
H(Cf ,Fn) + γnW (f ),

where LH is a metric of the space H (loss function) and γn is the
parameter of regularization satisfying that γn → 0 as n→∞.

Under these conditions, a function fn minimizing the functional
converges almost surely to the desired one.
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Regularization and Fourier-based density estimators

Assume f (x) belongs to the functions whose p-th derivatives belong
to L2(0, π), the kernel K(z − x) and

W (f ) =

∫
R

(∫
R
K(z − x)f (x)dx

)2

dz ,

The risk functional

Rγn(f ,Fn) =

∫
R

(∫ x

0

f (y)dy − Fn(x)

)2

dx+γn

∫
R

(∫
R
K(z − x)f (x)dx

)2

dz .

Denoting by f̂ (u), F̂n(u) and K̂(u) the Fourier transforms, by
definition

F̂n(u) =
1

2π

∫
R
Fn(x)e−iuxdx

=
1

2nπ

∫
R

n∑
j=1

η(x − Xj)e
−iuxdx =

1

n

n∑
j=1

exp(−iuXj)

iu
,

where i =
√
−1 is the imaginary unit.
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Regularization and Fourier-based density estimators

By employing the convolution theorem and Parseval’s identity

Rγn(f ,Fn) =

∥∥∥∥∥ f̂ (u)− 1
n

∑n
j=1 exp(−iuXj)

iu

∥∥∥∥∥
2

L2

+ γn

∥∥∥K̂(u)f̂ (u)
∥∥∥2

L2

.

The condition to minimize Rγn(f ,Fn) is given by,

f̂ (u)

u2
− 1

nu2

n∑
j=1

exp(−iuXj) + γnK̂(u)K̂(−u)f̂ (u) = 0,

which gives us,

f̂n(u) =

(
1

1 + γnu2K̂(u)K̂(−u)

)
1

n

n∑
j=1

exp(−iuXj).
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Regularization and Fourier-based density estimators

K(x) = δ(p)(x), and the desired PDF, f (x) and its p-th derivative
(p ≥ 0) belongs to L2(0, π), the risk functional becomes

Rγn(f ,Fn) =

∫ π

0

(∫ x

0
f (y)dy − Fn(x)

)2

dx + γn

∫ π

0

(
f (p)(x)

)2
dx .

Given orthonormal functions, ψ1(θ), . . . , ψk(θ), . . .

fn(θ) =
1

π
+

2

π

∞∑
k=1

Ãkψk(θ),

with Ã0, Ã1, . . . , Ãk , . . . expansion coefficients, Ãk =< fn, ψk >.

The coefficients Ãk cannot be directly computed from fn, but

Ãk =< fn, ψk >=< f̂n, ψ̂k >

=

∫ π

0

( 1

1 + γnu2K̂(u)K̂(−u)

)
1

n

n∑
j=1

exp(−iuθj)

 · ψ̂k(u)du.
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Regularization and Fourier-based density estimators

Using cosine series expansions, i.e., ψk(θ) = cos(kθ), it is well-known
that

ψ̂k(u) =
1

2
(δ(u − k) + δ(u + k)).

This facilitates the computation of Ãk avoiding the calculation of the
integral. Thus, the minimum of Rγn

Ãk =
1

2n

( 1

1 + γn(−k)2K̂(−k)K̂(k)

) n∑
j=1

exp(ikθj)

+

(
1

1 + γnk2K̂(k)K̂(−k)

) n∑
j=1

exp(−ikθj)


=

1

1 + γnk2K̂(k)K̂(−k)

1

n

n∑
j=1

cos(kθj) =
1

1 + γnk2(p+1)

1

n

n∑
j=1

cos(kθj),

where θj ∈ (0, π) are given samples of the unknown distribution. In
the last step, K̂(u) = (iu)p is used.
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The data-driven COS method

Employ the solution of the regularization problem for density
estimation in the COS framework.

In both, the density is assumed to be in the form of a cosine series
expansion.

The minimum of the functional is in terms of the expansion
coefficients.

Take advantage of the COS machinery: pricing options, Greeks, etc.

The samples must follow risk-neutral measure (Monte Carlo paths).
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The data-driven COS method

Key idea: Ãk approximates Ak .

Risk neutral samples from an asset at time T , S1(t), S2(t), . . . ,Sn(t).

With a logarithmic transformation, we have

Yj := log

(
Sj(T )

K

)
.

The regularization solution is defined in (0, π), by transformation

θj = π
Yj − a

b − a
,

The boundaries a and b are defined as

a := min
1≤j≤n

(Yj), b := max
1≤j≤n

(Yj).
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The data-driven COS method - European options

The Ak coefficients are replaced by the data-driven Ãk

Ak ≈ Ãk =

1
n

∑n
j=1 cos

(
kπ

Yj−a
b−a

)
1 + γnk2(p+1)

.

The ddCOS pricing formula for European options

ṽ(x , t) = e−r(T−t)

∞∑′

k=0

1
n

∑n
j=1 cos

(
kπ

Yj−a
b−a

)
1 + γnk2(p+1)

· Vk

= e−r(T−t)

∞∑′

k=0

ÃkVk .

As in the original COS method, we must truncate the infinite sum to
a finite number of terms N

ṽ(x , t) = e−r(T−t)

N∑′

k=0

ÃkVk ,
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The data-driven COS method - Greeks

Data-driven expressions for the ∆ and Γ sensitivities.

Define the corresponding sine coefficients as

B̃k :=

1
n

∑n
j=1 sin

(
kπ

Yj−a
b−a

)
1 + γnk2(p+1)

.

Taking derivatives of the ddCOS pricing formulat w.r.t the samples,
Yj , the data-driven Greeks, ∆̃ and Γ̃, can be obtained by

∆̃ = e−r(T−t)

N∑′

k=0

B̃k ·
(
− kπ

b − a

)
· Vk

S(0)
,

Γ̃ = e−r(T−t)

N∑′

k=0

(
B̃k ·

kπ

b − a
− Ãk ·

(
kπ

b − a

)2
)
· Vk

S2(0)
.
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The data-driven COS method - Variance reduction

Here, we show how to apply antithetic variates (AV) to our method.
Since the samples must be i.i.d., an immediate application of AV is
not possible.
Assume antithetic samples, Y ′i , that can be computed without extra
computational effort, a new estimator is defined as

Āk :=
1

2

(
Ãk + Ã′k

)
,

where Ã′k are “antithetic coefficients”, obtained from Y ′i .
It can be proved that the use of Āk results in a variance reduction.
Additional information to reduce the variance. For example, the
martingale property

S(T ) = S(T )− 1

n

n∑
j=1

Sj(T ) + E[S(T )],

= S(T )− 1

n

n∑
j=1

Sj(T ) + S(0) exp(rT ).
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Choice of parameters in ddCOS method

The choice of optimal values of γn and p.

There is no rule or procedure to obtain an optimal p.

As a rule of thumb, p = 0 seems to be the most appropriate value.

-4 -2 0 2 4

0

0.1

0.2

0.3

0.4
True

p = 0

p = 1

p = 2

p = 3

For the regularization parameter γn, a rule that ensures asymptotic
convergence

γn =
log log n

n
.
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Applications of the ddCOS method

Pricing options (no better than Monte Carlo).

Sensitivities or Greeks.

Models without analytic characteristic function. SABR model.

Risk measures: VaR and Expected shortfall.

Combinations.
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Applications of the ddCOS - Option pricing
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Figure: Convergence in prices of the ddCOS method: Antithetic Variates (AV);
GBM, S(0) = 100, r = 0.1, σ = 0.3 and T = 2.
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Applications of the ddCOS - Greeks estimation
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Figure: Convergence in Greeks of the ddCOS method: Antithetic Variates (AV);
GBM, S(0) = 100, r = 0.1, σ = 0.3 and T = 2.
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Applications of the ddCOS - Greeks estimation

K (% of S(0)) 80% 90% 100% 110% 120%

0.1 ∆

Ref. 0.8868 0.8243 0.7529 0.6768 0.6002
ddCOS 0.8867 0.8240 0.7528 0.6769 0.6002

RE 1.1012× 10−4

MCFD 0.8876 0.8247 0.7534 0.6773 0.6006
RE 7.5168× 10−4

Γ

Ref. 0.0045 0.0061 0.0074 0.0085 0.0091
ddCOS 0.0045 0.0062 0.0075 0.0084 0.0090

RE 8.5423× 10−3

MCFD 0.0045 0.0059 0.0071 0.0079 0.0083
RE 4.9554× 10−2

Table: GBM call option Greeks: S(0) = 100, r = 0.1, σ = 0.3 and T = 2.
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Applications of the ddCOS - Greeks estimation

K (% of S(0)) 80% 90% 100% 110% 120%

∆

Ref. 0.8385 0.8114 0.7847 0.7584 0.7328
ddCOS 0.8383 0.8113 0.7846 0.7585 0.7333

RE 2.7155× 10−4

MCFD 0.8387 0.8118 0.7850 0.7586 0.7330
RE 3.1265× 10−4

Γ

Ref. 0.0022 0.0024 0.0027 0.0029 0.0030
ddCOS 0.0022 0.0024 0.0027 0.0029 0.0030

RE 8.2711× 10−3

MCFD 0.0023 0.0026 0.0028 0.0031 0.0033
RE 6.118× 10−2

Table: Merton jump-diffusion call option Greeks: S(0) = 100, r = 0.1, σ = 0.3,
µj = −0.2, σj = 0.2 and λ = 8 and T = 2.
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Applications of the ddCOS - Greeks estimation

K (% of S(0)) 80% 90% 100% 110% 120%

∆

Ref. 0.9914 0.9284 0.5371 0.0720 0.0058
ddCOS 0.9916 0.9282 0.5363 0.0732 0.0058

RE 5.2775× 10−3

MCFD 0.9911 0.9279 0.5368 0.0737 0.0058
RE 5.5039× 10−3

Table: Call option Greek ∆ under the SABR model: S(0) = 100, r = 0, σ0 = 0.3,
α = 0.4, β = 0.6, ρ = −0.25 and T = 2.
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Applications of the ddCOS - Greeks estimation

K (% of S(0)) 80% 90% 100% 110% 120%

∆

Ref. 0.8384 0.7728 0.6931 0.6027 0.5086
ddCOS 0.8364 0.7703 0.6902 0.6006 0.5084

RE 2.7855× 10−3

Hagan 0.8577 0.7955 0.7170 0.6249 0.5265
RE 3.1751× 10−2

Table: ∆ under SABR model. Setting: Call, S(0) = 0.04, r = 0.0, σ0 = 0.4,
α = 0.8, β = 1.0, ρ = −0.5 and T = 2.
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Applications of the ddCOS - Risk measures

In the context of the Delta-Gamma approach (COS in [OGO14]).

The change in a portfolio value is defined:

L := −∆V = V (S , t)− V (S + ∆S , t + ∆t).

The formal definition of the VaR reads

P(∆V < VaR(q)) = 1− FL(VaR(q)) = q,

with q a predefined confidence level.

Given the VaR, the ES measure is computed as

ES := E[∆V |∆V > VaR(q)].

Two portfolios with the same composition: one European call and half
a European put on the same asset, maturity 60 days and K = 101.

Different time horizons: 1 day (Portfolio 1) and 10 days (Portfolio 2).
The asset follows a GBM with S(0) = 100, r = 0.1 and σ = 0.3.
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Applications of the ddCOS - Risk measures
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Figure: Recovered densities of L: ddCOS vs. COS.
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Applications of the ddCOS - Risk measures
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(b) Portfolio 2: q = 90%.

Figure: VaR and ES convergence in n.

Álvaro Leitao (CWI & TUDelft) The ddCOS method CMMSE 2017, July 6, 2017 27 / 39



Applications of the ddCOS - Risk measures

The oscillations can be removed.

Two options: smoothing parameter or filters [RVO14].
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Figure: Smoothed densities of L.
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Applications of the ddCOS - Risk measures and SABR
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Figure: Delta-Gamma approach under the SABR model. Setting: S(0) = 100,
K = 100, r = 0.0, σ0 = 0.4, α = 0.8, β = 1.0, ρ = −0.5, T = 2, q = 99% and
∆t = 1/365.
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Applications of the ddCOS - Risk measures and SABR

q 10% 30% 50% 70% 90%

VaR −1.4742 −0.5917 −0.0022 0.5789 1.3862
ES 0.1972 0.5345 0.8644 1.2517 1.8744

Table: VaR and ES under SABR model. Setting: S(0) = 100, K = 100, r = 0.0,
σ0 = 0.4, α = 0.8, β = 1.0, ρ = −0.5, T = 2, and ∆t = 1/365.
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Conclusions

The ddCOS method extends the COS method applicability to cases
when only data samples of the underlying are available.

The method exploits a closed-form solution, in terms of Fourier cosine
expansions, of a regularization problem.

It allows to develop a data-driven method which can be employed for
option pricing and risk management.

The ddCOS method particularly results in an efficient method for the
∆ and Γ sensitivities computation, based solely on the samples.

It can be employed within the Delta-Gamma approximation for
calculating risk measures.
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Suggestions, comments & questions

Thank you for your attention
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Choice of γn

γn impacts the efficiency of the ddCOS method: it is related to the
number of samples, n, and number of terms, N.

For the regularization parameter γn, a rule that ensures asymptotic
convergence

γn =
log log n

n
.

In practical situations: not optimal.

Exploit the relation between the empirical and real (unknown) CDFs.
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Choice of γn

This relation can be modeled by statistical laws or statistics:
Kolmogorov-Smirnov, Anderson-Darling, Smirnov-Cramér–von Mises.

Preferable: a measure of the distance between the Fn(x) and F (x)
follows a known distribution.

We have chosen Smirnov-Cramér–von Mises(SCvM):

ω2 = n

∫
R

(F (x)− Fn(x))2 dF (x).

Assume we have an approximation, Fγn (which depends on γn).

An almost optimal γn is computed by solving the equation

n∑
i=1

(
Fγn(X̄i )−

i − 0.5

n

)2

= mS −
i

12n
,

where X̄1, X̄2, . . . , X̄n is the ordered array of samples X1,X2, . . . ,Xn

and mS the mean of the ω2.
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Influence of γn

To assess the impact of γn: Mean integrated Squared Error (MiSE):

E
[
‖fn − f ‖2

2

]
= E

[∫
R

(fn(x)− f (x))2 dx

]
.

A formula for the MiSE formula is derived in our context:

MISE =
1

n

N∑
k=1

1(
1 + γnk2(p+1)

)2

(
1

2
+

1

2
A2k − A2

k

)
+

∞∑
k=N+1

A2
k .

Two main aspects influenced γn: accuracy in n and stability in N.

The quality of the approximated density can be also affected.
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Influence of γn
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Figure: Influence of γn: .
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Optimal number of terms N

Try to find a minimum optimal value of N.
N considerably affects the performance.
We wish to avoid the computation of any Âk .
We define a proxy for the MiSE and follow:

MiSE ≈ 1

n

N∑
k=1

1
2(

1 + γnk2(p+1)
)2
.
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Figure: MiSE proxy.
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Optimal number of terms N

Data: n, γn
Nmin = 5
Nmax =∞
ε = 1√

n

MiSEprev =∞
for N = Nmin : Nmax do

MiSEN = 1
n

∑N
k=1

1
2

(1+γnk2(p+1))
2

εN =
|MiSEN−MiSEprev |

|MiSEN |
if εN > ε then

Nop = N

else
Break

MiSEprev = MiSEN

n
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Figure: Almost optimal N.
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