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The COS method

@ Well known and established method: [FOO08], [FO09], etc.
o Fourier-based method to price financial options.
@ Starting point is risk-neutral valuation formula:

V(. t) = e TR [y(y, T)x] = (T / vy, T)F(yIx)dy,

where r is the risk-free rate and f(y|x) is the density of the
underlying process. Typically, we have:

x = log (55(0)> and y := log <S(KT)>

e f(y|x) is unknown in most of cases.

@ However, characteristic function available for many models.

@ Exploit the relation between the density and the characteristic
function (Fourier pair).
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The COS method - European options

e f(y|x) is approximated, on a finite interval [a, b], by a cosine series

f(ylx) = ﬁ (Ao + 2ZAk(x) - cos <k77); : z>> ,

k=1

b
Ao =1, Ak(x)—/ f(y|x) cos <k7rb >dy, k=1,2,....
. _

@ Interchanging the summation and integration and introducing the

definition
) dy,
a

v(x,t) = e r(T-1) Z/ Ak (x) Vi,

2 b
Vi = b—al, v(y, T)cos <k7rb

we find that the option value is given by

where / indicates that the first term is divided by two.
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Pricing European options with the COS method

Coefficients A, can be computed from the ChF.

Coefficients Vj are known analytically (for many types of options).

Closed-form expressions for the option Greeks A and I

Cov(xt) 1 dv(x,t) = 0AK(X) V,
A="95 T50) ox rep(-r(T-10)) =5 Wk))

k=0

_ P(x.t) _ = [ 9A( x) L PA) Vi
=35 —~er(=r(T-1) Z( 9x2) )52(0)

Due to the rapid decay of the coefficients, v(x, t), A and I' can be
approximated with high accuracy by truncating to N terms.
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“Learning” densities

o Statistical learning theory: deals with the problem of finding a
predictive function based on data.

@ We follow the analysis about the problem of density estimation
proposed by Vapnik in [Vap98].
@ Given independent and identically distributed samples X1, X, ..., Xj,.

e By definition, density f(x) is related to the cumulative distribution
function, F(x), by means of the expression

|ty = £,

—0o0

e Function F(x) is approximated by the empirical approximation

Falx) = =3 mlx = X0,
i=1

where 7(+) is the step-function. Convergence O(1/+/n).
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Regularization approach

@ The previous equation can be rewritten as a linear operator equation
Cf=F~F,,

where the operator Ch:= [*_ h(z)dz.

@ Stochastic ill-posed problem. Regularization method (Vapnik).
@ Given a lower semi-continuous functional W(f) such that:
» Solution of Cf = F,, belongs to D, the domain of definition of W(f).
» The functional W(f) takes real non-negative values in D.
» The set M. = {f : W(f) < ¢} is compact in H (the space where the
solution exits and is unique).

@ Then we can construct the functional
R, (f, Fn) = L3,(Cf, F,) + v W(F),

where Ly, is a metric of the space #H (loss function) and =, is the
parameter of regularization satisfying that v, — 0 as n — oco.

@ Under these conditions, a function f,, minimizing the functional
converges almost surely to the desired one.

Alvaro Leitao (CWI & TUDelft) The ddCOS method CMMSE 2017, July 6, 2017 7 /39



Regularization and Fourier-based density estimators

@ Assume f(x) belongs to the functions whose p-th derivatives belong
to L(0,7), the kernel K(z — x) and

W(f) = /R ( /R IC(z—x)f(x)dx)zdz,

@ The risk functional
2

R, (f, Fn) = /R < /0 ’ f(y)dyF,,(x)) dx+7n /R ( /R IC(zx)f(x)dx)zdz.

e Denoting by 7(u), F,(u) and K(u) the Fourier transforms, by
definition

A 1 .
Folu) = o / Fa(x)e™ ¥ dx

—IUX (_X)
2,777/277)(_ dx Zexp'luj’

u
_/1

where i = 4/—1 is the imaginary unit.
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Regularization and Fourier-based density estimators

o By employing the convolution theorem and Parseval’s identity

~ n . 2
f(u) — % > i1 exp(—iuX;)

iu

2

Ron(fs Fr) = o || K(u)F(u)

-
Lo 2

@ The condition to minimize R, (f, F,) is given by,

7_729')@ (—iuX;) + YK (u)K(—u)f(u) = 0,

u? nu?

which gives us,

i = ( ! ) Zexp(—:ux

14 v,u2K(u)K
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Regularization and Fourier-based density estimators

o K(x) = 6(P)(x), and the desired PDF, f(x) and its p-th derivative
(p > 0) belongs to L»(0, ), the risk functional becomes

™ X 2 ™ 2
R, (f,Fn) :/ (/ f(y)dy — Fn(x)) dx+'y,,/ (f(P)(x)) dx.
0 0 0
e Given orthonormal functions, 1¥1(0), ..., 9¥k(0),...
1 25
=—+—-> A 0
i kz_:l kP (0)

with Ag, A1, ..., Ax, ... expansion coefficients, A =< f,, 1y >.
@ The coefficients A, cannot be directly computed from f,, but

Ay =< Fo,thy >=< Fo, by >

:/0” <1—|—’yu21C1( > Zexp(_,ue De()du

Alvaro Leitao (CWI & TUDelft) The ddCOS method CMMSE 2017, July 6, 2017 10 / 39




Regularization and Fourier-based density estimators

@ Using cosine series expansions, i.e., 1, (0) = cos(k6), it is well-known
that

Delu) = %(5(11 — )+ 8(u + K)).

e This facilitates the computation of Ay avoiding the calculation of the
integral. Thus, the minimum of R,

Ak_;”(<1+w( e )ZEX" )
i <1+7nk2/c K)K(—k) )ZeXp o) )

. (k6)) (k6))
l+7k21C )R(—k) ZCOS 1+ﬁk2P+1 ZC"S

where 6; € (0, 7) are given samples of the unknown d|str|but|on. In
the last step, K(u) = (iu)P is used.
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The data-driven COS method

@ Employ the solution of the regularization problem for density
estimation in the COS framework.

@ In both, the density is assumed to be in the form of a cosine series
expansion.

@ The minimum of the functional is in terms of the expansion
coefficients.

o Take advantage of the COS machinery: pricing options, Greeks, etc.

@ The samples must follow risk-neutral measure (Monte Carlo paths).
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The data-driven COS method

Key idea: Ak approximates Ay.
Risk neutral samples from an asset at time T, S1(t), S2(t),. .., Sa(t).

With a logarithmic transformation, we have

Y; :=log (ng)) .

@ The regularization solution is defined in (0, ), by transformation
Y, —a
9; = w2
J b—a’

@ The boundaries a and b are defined as

a:= 1g.'gn(Yj), b:= 1rgagxn(Yj)-
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The data-driven COS method - European options

o The Ay coefficients are replaced by the data-driven Ay

1 j= 1cos(l<7rb a)
14 ypk2pt) 7
@ The ddCOS pricing formula for European options

Ak%ANk

(Tt i i1 COS (kﬂ' Z’__:) v

v(x.t) 2(p+1 k
—0 1+’Ynk (p+1)
e—r(T—t) Z, A~k Vi.
k=0

@ As in the original COS method, we must truncate the infinite sum to
a finite number of terms N

N
(Xt' TtZANVk,
k=0
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The data-driven COS method - Greeks

@ Data-driven expressions for the A and I sensitivities.

@ Define the corresponding sine coefficients as

. 1 = 1sm(lﬂrb a)
Bie:= 1+7nk2(p+1)

k -—

o Taking derivatives of the ddCOS pricing formulat w.r.t the samples,
Y;, the data-driven Greeks, A and ', can be obtained by

_ . —r(T—t) "B km . Vi
- Z < > 5(0)°
N 2
F_ a—r(T—t) L ' km A km ) Vi
r=e D (Bk b—a (b—a>> S2(0)°
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The data-driven COS method - Variance reduction

@ Here, we show how to apply antithetic variates (AV) to our method.

@ Since the samples must be i.i.d., an immediate application of AV is
not possible.

o Assume antithetic samples, Y/, that can be computed without extra
computational effort, a new estimator is defined as

1/~ -
A= (Ak+A’k>,

where A, are “antithetic coefficients”, obtained from Y.

o It can be proved that the use of Ay results in a variance reduction.
@ Additional information to reduce the variance. For example, the
martingale property

S(T) = S(T) =+ 32 (T + EIS(TL

= S(T) = 23 §(T)+ S(0) exp(rT).
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Choice of parameters in ddCOS method

@ The choice of optimal values of ~, and p.
@ There is no rule or procedure to obtain an optimal p.
@ As a rule of thumb, p = 0 seems to be the most appropriate value.

@ For the regularization parameter -y,, a rule that ensures asymptotic

convergence
loglog n

n
n
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Applications of the ddCOS method

Pricing options (no better than Monte Carlo).
Sensitivities or Greeks.
Models without analytic characteristic function. SABR model.

Risk measures: VaR and Expected shortfall.

Combinations.
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Applications of the ddCOS - Option pricing

10' 10"

#ddCOS #ddCOS
-#ddCOS, AV & #ddCOS, AV
-+ MC Ss g * MC

100 # MG, AV 1008, - #MC, AV
= <)
2z z
= =

107"

1072 1072

10" 102 108 104 105 10! 102 10° 104 10°
n n
(a) Call: Strike K = 100. (b) Put: Strike K = 100.

Figure: Convergence in prices of the ddCOS method: Antithetic Variates (AV);
GBM, 5(0) =100, r=0.1,0 =03 and T =2.
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Applications of the ddCOS - Greeks estimation

#ddCOS A #ddCOS T
#ddCOS A, AV #ddCOS T, AV
+MCFD A 1028 < #MCFD T
#MCFD A, AV EDE #MCFD T, AV

MSE
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(a) A (Call): Strike K = 100. (b) I': Strike K = 100.

Figure: Convergence in Greeks of the ddCOS method: Antithetic Variates (AV);
GBM, 5(0) =100, r=0.1, 0 =03 and T = 2.
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Applications of the ddCOS - Greeks estimation

K (% of 5(0)) | 80%  90%  100% 110%  120%
0.1 A
Ref. 0.8868 0.8243 0.7529 0.6768 0.6002
ddCOS 0.8867 0.8240 0.7528 0.6769 0.6002
RE 1.1012 x 10~
MCFD 0.8876 0.8247 0.7534 0.6773 0.6006
RE 7.5168 x 10~4
=
Ref. 0.0045 0.0061 0.0074 0.0085 0.0091
ddCOS 0.0045 0.0062 0.0075 0.0084 0.0090
RE 8.5423 x 103
MCFD 0.0045 0.0059 0.0071 0.0079 0.0083
RE 4.9554 x 1072

Table: GBM call option Greeks: 5(0) =100, r=0.1, 0 =03 and T = 2.
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Applications of the ddCOS - Greeks estimation

K (% of 5(0)) | 80% 90%  100% 110% 120%
A
Ref. 0.8385 0.8114 0.7847 0.7584 0.7328
ddCOS 0.8383 0.8113 0.7846 0.7585 0.7333
RE 2.7155 x 1074
MCFD 0.8387 0.8118 0.7850 0.7586 0.7330
RE 3.1265 x 10~*
=
Ref. 0.0022 0.0024 0.0027 0.0029 0.0030
ddCOS 0.0022 0.0024 0.0027 0.0029 0.0030
RE 8.2711 x 1073
MCFD 0.0023 0.0026 0.0028 0.0031 0.0033
RE 6.118 x 102

Table: Merton jump-diffusion call option Greeks: S(0) = 100, r = 0.1, 0 = 0.3,
pj=—-02,0,=02and A=8and T = 2.
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Applications of the ddCOS - Greeks estimation

K (% of S(0)) | 80%  90%  100% 110% 120%

A

Ref. 0.9914 0.9284 0.5371 0.0720 0.0058
ddCOS 0.9916 0.9282 0.5363 0.0732 0.0058
RE 5.2775 x 1073

MCFD 0.9911 0.9279 0.5368 0.0737 0.0058
RE 5.5039 x 103

Table: Call option Greek A under the SABR model: $(0) = 100, r =0, oo = 0.3,
a=04, =06, p=-025and T =2.
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Applications of the ddCOS - Greeks estimation

K (% of S(0)) | 80%  90%  100% 110% 120%

A

Ref. 0.8384 0.7728 0.6931 0.6027 0.5086
ddCOS 0.8364 0.7703 0.6902 0.6006 0.5084
RE 2.7855 x 103

Hagan 0.8577 0.7955 0.7170 0.6249 0.5265
RE 3.1751 x 102

Table: A under SABR model. Setting: Call, S(0) = 0.04, r = 0.0, oo = 0.4,
a=08 =10 p=-05and T =2.
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Applications of the ddCOS - Risk measures

@ In the context of the Delta-Gamma approach (COS in [0GO14]).
@ The change in a portfolio value is defined:

L:=—-AV =V(5,t)— V(5+ AS, t+ At).
@ The formal definition of the VaR reads
P(AV < VaR(q)) =1—- Fi(VaR(q)) = q,

with g a predefined confidence level.
@ Given the VaR, the ES measure is computed as

ES := E[AV|AV > VaR(q)].

@ Two portfolios with the same composition: one European call and half
a European put on the same asset, maturity 60 days and K = 101.

o Different time horizons: 1 day (Portfolio 1) and 10 days (Portfolio 2).
The asset follows a GBM with S(0) = 100, r = 0.1 and ¢ = 0.3.
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Applications of the ddCOS - Risk measures

’
- cos
0.8
06
B
g
0.4
0.2
0
2 1 0 1 2 2 0 2 4
T x
(a) Density Portfolio 1. (b) Density Portfolio 2.

Figure: Recovered densities of L: ddCOS vs. COS.
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Applications of the ddCOS - Risk measures

10° 10"
s +VaR
~ * ES
R
-~ R
107 ~ug 100 Sy,
) s 53| \%
2} < 2] N
= s = s
1072 \*\q; 107" \’“\\
e
-3 -2
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10° 102 108 104 10% 10" 102 10° 104 10°
n n
(a) Portfolio 1: g = 99%. (b) Portfolio 2: g = 90%.

Figure: VaR and ES convergence in n.
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Applications of the ddCOS - Risk measures

@ The oscillations can be removed.
e Two options: smoothing parameter or filters [RVO14].

1 2
—COS —COs
--ddCOS, p=1 --ddCOS, p=1
0.8 |}--ddCOS, filter 1.5 {[-ddCOS, filter
06
)
S
0.4
0.2
0
2 1 0 1 2
x x
(a) Density Portfolio 1. (b) Density Portfolio 2.
Figure: Smoothed densities of L.
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Applications of the ddCOS - Risk measures and SABR

]
3 —ddCOS T,
_a------"9 —ddCOS F |
-7 0.8 [__ddcos f , filter
25 »"_ B il ol _ ddcos FLL, fiter
%
L° 0.6
4
2 L ¢
0.4
1.5
-[-ddCOS vaR 02
-l ddCcOS ES
1
10 10° 10° 10* 10° 0 > . s ”
n T
(a) VaR and ES: g = 99%. (b) Fr and f;.

Figure: Delta-Gamma approach under the SABR model. Setting: S(0) = 100,
K =100, r=0.0,00=04, =08, =10, p=-05, T =2, g=99% and
At = 1/365.
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Applications of the ddCOS - Risk measures and SABR

g | 10% 30% 50% 70%  90%
VaR | —1.4742 —0.5917 —0.0022 0.5789 1.3862
ES | 01972 0.5345 0.8644 1.2517 1.8744

Table: VaR and ES under SABR model. Setting: S(0) = 100, K = 100, r = 0.0,
00=04,a=08, =10 p=-05 T =2, and At = 1/365.
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Conclusions

@ The ddCOS method extends the COS method applicability to cases
when only data samples of the underlying are available.

@ The method exploits a closed-form solution, in terms of Fourier cosine
expansions, of a regularization problem.

o It allows to develop a data-driven method which can be employed for
option pricing and risk management.

@ The ddCOS method particularly results in an efficient method for the
A and [ sensitivities computation, based solely on the samples.

@ It can be employed within the Delta-Gamma approximation for
calculating risk measures.
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Suggestions, comments & questions

»

Thank you for your attention
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Choice of ~,

@ v, impacts the efficiency of the ddCOS method: it is related to the
number of samples, n, and number of terms, N.

@ For the regularization parameter v, a rule that ensures asymptotic
convergence

_loglogn

==

Yn

@ In practical situations: not optimal.

e Exploit the relation between the empirical and real (unknown) CDFs.
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Choice of ~,

@ This relation can be modeled by statistical laws or statistics:
Kolmogorov-Smirnov, Anderson-Darling, Smirnov-Cramér—von Mises.

@ Preferable: a measure of the distance between the F,(x) and F(x)
follows a known distribution.

@ We have chosen Smirnov-Cramér—von Mises(SCvM):

2—n X) — X2 X).
WP = /R<F() Falx))2 dF(x)

@ Assume we have an approximation, F., (which depends on ;).
@ An almost optimal 7y, is computed by solving the equation

n

o i—05)? i
Z(F%(Xi)— n > :ms_m7

i=1

where X1, Xo, ..., X, is the ordered array of samples X1, Xo, ..., X,
and mg the mean of the w?.
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Influence of v,

To assess the impact of 7,: Mean integrated Squared Error (MiSE):

E [l - 18] = | [ (o)~ r) o]

A formula for the MISE formula is derived in our context:

1 1 1 1 >0
MISE = =" 2<2+2A2k—Ai>+ > oA

n k=1 (1 + ’Y"kz(p—i_l)) k=N+1

Two main aspects influenced ,: accuracy in n and stability in N.

The quality of the approximated density can be also affected.

Alvaro Leitao (CWI & TUDelft) The ddCOS method CMMSE 2017, July 6, 2017 36 / 39



Influence of ~,

MISE
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Figure: Influence of ~,:
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Optimal number of terms N

@ Try to find a minimum optimal value of N.

@ NN considerably affects the performance.

@ We wish to avoid the computation of any Ay.
@ We define a proxy for the MiSE and follow:

1 1
MiSE ~ = > YT
n —1 (]_ +f}/nk (p+ ))
10°
—, fule
4 — 7, fule - addend 1
10 Y rule - proxy
2 —, SCwM
= 10 ~ 4, SGVM - addend 1
E 1073 <+, SCYM - proxy
10 57
a
-5 1
10 0 50 100 150 200
N
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Optimal number of terms N

Data: n, v,
Nmin =5
Niax = 00 18
e= L
V/n 16
MiSEpre, = 00 14
for N = Npip : Nppax do 12
MiSEy =1y & Ty
SEn =5 2k (1—&-'y,,/<2(p+1))2
 [MIiSEy—MiSE e | 8
N = [MiSEn| 6
if ey > ¢ then 4
L Ny, = N 10° 102 108
P n
else
L Break Figure: Almost optimal N.
| MiSEe, = MiSEy
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