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Motivation

@ The Heston model is a widely utilized stochastic volatility (SV)
models in the option pricing literature as well as in practice.

o For a fixed time horizon, the characteristic function (ChF) is known in
closed-form.

@ Then, European option pricing is efficiently accomplished with any
standard Fourier method.

@ Enabling a fast calibration of the Heston model parameters to match
observed volatility surfaces, as required in practice.

@ However, after calibration there is still great difficulty in pricing exotic
contracts under the Heston model.

@ To price contracts such as Asian options and variance swaps, Monte
Carlo (MC) methods are the traditional surrogates in these cases.

@ Unfortunately, MC suffers from a number of well known deficiencies,
and complicated simulation schemes are often required to overcome
the boundary effects that accompany models such as Heston.
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What we propose

@ The practical objective of this work is to formalize a model which
reproduces vanilla market quotes, but is at the same time amenable
to complex derivative pricing in a manner that is consistent with the
calibrated model.

@ We propose a model and framework based on the Heston model. We
call this the CTMC-Heston model, as it uses a finite state Continuous
Time Markov Chain (CTMC) approximation to the variance process.

@ The new formulation enables a closed-form solution for the ChF of
the underlying (log-)returns, which allows the use of Fourier inversion
techniques to efficiently price exotics.

@ We provide numerical studies which demonstrate convergence to

Heston's model as the state space is refined. A detailed theoretical
analysis of the method will follow.
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Outline

@ From Heston model to CTMC-Heston model
© Calibration of the CTMC-Heston model

© Application: Pricing Exotic options under CTMC-Heston model

@ Conclusions
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From Heston model to CTMC-Heston model

@ The Heston stochastic volatility model,

dSe — (r — q)dt + ed W}, )
dve = n(0 — ve)dt + oy /vedW?,

where dW} and dW? are correlated Brownian motions, i.e.
dWEdW? = pdt, with p € (—1,1).

@ The stochastic volatility (or variance), v, is driven by a CIR process,
having a mean reversion component.

o Value vy is the initial volatility,  controls the mean reversion speed
while 6 is the long-term volatility and o, corresponds to the volatility
of the variance process v;, also known as vol-vol
(volatility-of-volatility).

@ The model parameters are therefore © = {vy,n,0,0,,p}.
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@ The Heston's model solution can be re-expressed in the form
log (:%) = 0% (ve —wo)+(r—q)t— %fot vsds
—£ [y (0 — ve)ds + /1 — p? [5 \/vad W7,
where W} := pW2 + /1 — p2W; and W; is independent from W72
@ Rearranging, we introduce the auxiliary process ()?t)tZO:
X, — St L
Xt = log (50> — (vt — o)
- (I‘—q— %0> tt (Zl - %) fotvsd5+ V 1_92f0t\/75dWs*-
@ We thus have the following uncoupled two-factor representation,
aX; = [(2 = Dve +3] de + /(1= p2)ved g,
dve = p(ve)dt + o(ve)dW2,

where © == (r — q — %VQ), p(ve) == n(0 — v¢) and o(vt) := oy+/Vs.
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CTMC-Heston model

o Given a state-space v := {vi,..., Vmy}, and a CTMC {a(t),t > 0}
transitioning between the indexes {1,..., mg} according to
Qfa(t + At) = jla(t) = k} = 0jk + qj At + o( At).
@ The set of transition rates gjx form the generator matrix Qmgxm.
chosen so that (v, (t))t>0 are locally consistent with (v¢)¢>o.

o Given (vu(r))e>0, X is approximated by a Regime Switching (RS)
diffusion,

)?a—‘t+/ <p77_> a(sds+\/1—7/ Vas)dW*(s)

/ Ca )ds+/ Ba(s)dW*(s

where for a(s) € {1,.

0 1
Ca(s) = <f —q- p: >+<pn - 2> Va(s): Ba(s) = /(1 = p?)Va(s)-

v Ov
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@ Main advantage: the new formulation enables a closed-form
expression for the conditional ChF. Given At >0, Vj =1,..., mg,

T (€)= E[EEa(0 < s < At) = ]
= E [exp (i (GAt + B;W*(At)))] := exp(1(§)At),

where ¢;(§) = i(;§ — 56287,/ =1,...,mo. is its Lévy symbol.
@ The process )~(t°‘ is completely characterized by the set {1;(£)}
together with the generator Q.
e The ChF of X3,, At > 0, conditioned on the initial state a(0) = jo,

mo
=1

E |eXa:¢|a(0) :jo] =1M(¢ At)ejy, jo€{1,....mo}
where we define the matrix exponential

M(&; At) = exp (At (Q/ + diag(¥1(€), - - -, ¢mo(f))) ;

and 1 € R™ represents a column vector of ones, and e; € R™ a unit
column vector with a one in position j.
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° )N(gt induces the following CTMC-Heston model for the underlying
Sa:, namely

(o4 Yo p
Sx: = Soexp <XAt + ;(Va(m) - Va(O))) .
@ The conditional ChF of the log-increment
e} o Yo p
Ra: = log(SA¢/S0) = XA: + ;(Va(Af) ~ Va(0));

is recovered in closed-form as

v

E[eRa:¢|a(0) = j, a(At) = k] = My j(&; At) - exp <i€Up(Vk - Vj))
= My j(& At).

which follows from conditional independence.

@ We can view the CTMC-Heston model as both an approximation to
Heston's model, as well as a tractable model in its own right.
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Calibration of the CTMC-Heston model

@ As a Fourier inversion method we employ SWIFT, which has several
important advantages which make it well-suited for calibration:

» Error control. It is probably the most relevant property within an
optimization problem. Thanks to the use of Shannon wavelets, SWIFT
establishes a bound in the error given any scale m of approximation.

» Robustness. SWIFT provides mechanisms to determine all the free
parameters in the approximation made based on the scale m which, as
mentioned in the previous point, determines the committed error.

» Performance efficiency. As other Fourier inversion techniques,
SWIFT is an extremely fast algorithm, allowing FFT, vectorized
operations or even parallel computing features.

» Accuracy. Although an error bound is provided, SWIFT has
demonstrated a very high precision in most situations, far below the
predicted error bound and, at least, comparable with the
state-of-the-art methodologies.

@ The properties mentioned above ensure high quality estimations in
the calibration process, reducing the chances of any possible
malfunctioning or divergence in the optimization procedure.
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Grid selection

@ Our goal is to form a model which parsimoniously resembles Heston.

@ One of the key aspects in designing the CTMC-Heston model is a
specification for the variance state-space (grid).

@ Several conceptually different approaches available in the literature.
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CTMC: numerical study

@ Data sets: two representative scenarios.

’ ‘ scenario ‘ Vo n 0 oy 0
Set | | regular market | 0.03 3.0 0.04 025 -0.7
Set Il | stressed market | 0.4 3.0 04 05 -0.1

@ Convergence in mg.
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Influence of the model parameters

[—uniform
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02 0.4 0.6 08 1 1 05 0 05 1 2 a 6 8 10

Figure: Set I: put option, Sp = 100, K =100, r =0.05and T = 1.
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Influence of the model parameters
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Calibration with real data (Microsoft, January 2019)
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Calibration with real data (Google, January 2019)
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Interesting lessons

@ All the approaches provide numerical convergence in my.

@ The error decays very fast at the beginning, with smaller mg, and
smoothens for bigger mg, suggesting a damping effect.

@ The grid distribution proposed by Lo and Skindilias provides, in
general, poorer estimations.

@ Although the uniform approach performs surprisingly well in the test
with synthetic parameters, the real calibration experiment shows a
pretty inaccurate estimations for options far from at-the-money strike.

@ The schemes by Mijatovic-Pistorius and Tavella-Randall perform
similarly. It is worth noting that the first explodes when the initial and
long-term volatilities differ greatly one from the other. The second
happens to be the most robust and precise choice in general.

@ By focusing on the correlation parameter, p, in the second test, we
observe that the error tends to be minimum close to the no-correlation
point (p = 0), and it degrades when p ventures far form zero.
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Application: Exotic options under CTMC-Heston model

@ Once calibrated, a model is commonly employed to price more
involved products (early-exercise, path-dependent, etc.).

@ Many exotic products can be defined in terms of a generic recursion.

o Consider N + 1 monitoring dates, 0 =tp <t < --- <ty =T. We
define the log returns R, by

R, .= log <55n > , S, = S(tn), n=1,.. N.
n—1

@ The contracts of interest satisfy a very general sequence of equations
Y1 :=wpn - h(Rn) + on
Y= WN—(n-1) ° h(RN—(n—l)) + g( Yn—l) + ON—(n-1), N= 2,...,N,

where h, g are continuous functions, {w,}"_; is a set of weights, and
{on}N_, is a set of shift parameters. Includes contracts of the form

N
G (Z W, - h(R,,);@) .
n=1
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@ Prominent examples of contracts which fall within this framework.
» Realized variance swaps and options:

N N
1 2 1 2
Ay = 7 ,?:1 (Rn) and Ay = 7 n§:1 (exp(Rn) - 1) ’

with G(Ay) := Ay — K (swap), and G(An) := (Ay — K)T (call).
» Cliquets: with local (global) floor and cap F, G (Fg, Gg),

N
Ay = Z max (F, min (C,exp(R,) — 1)),

n=1

with G(Ay) = K - min (Cg, max (Fg, An)).
» Arithmetic (weighted) Asian Options:

1 N
Ay = —— nn
N N+1"Z::0WS

So
N+1

where G(Ay) := (Any — K)™ for a call option.

(Wo + eR1 (Wl + eRZ ( . '6‘RN71 (WN—l =+ WNeRN)))) s
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Numerical experiments with exotic options

@ We will present some experiments aiming to numerically validate the
introduced CTMC-Heston model.

@ We will consider several exotic contracts: realized variance swaps,
realized variance options and Asian options.

@ The recursive definition above allows efficient Fourier methods
(SWIFT).

@ The realized variance swaps are chosen for comparative purposes,
since an exact solution for the Heston model is available.

@ That is not the case for the other two products, which often require
the use of MC methods.

@ Computer system CPU Intel Core i7-4720HQ 2.6GHz, 16GB RAM
and Matlab R2017b.

@ Based on the calibration tests, Tavella-Randall scheme is used.
@ MC setting: QE scheme with 10° paths and 360 time steps.
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Convergence in my

—M=5 —M=5

Figure: Variance Swaps: r = 0.05 and T = 1. Heston parameters: Set | (regular
market). Grid Design: Tavella-Randall.

tiz-Gracia CTMC-Heston model July 12, 2019 21 /30



Convergence in my

10 20 30 40
mo

(b) p=—0.7.

Figure: Variance Swaps: r = 0.05 and T = 1. Heston parameters: Set Il (stressed
market). Grid Design: Tavella-Randall.
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Realized variance swaps (Set |)

p=—0.1
N Ref. SWIFT MC REswiFT REwmc
5 0.0371205474 0.0371205820 0.0371242281 9.32x 10~/ 9.91 x 10~°
12 0.0369570905 0.0369571055 0.0369627242 4.06 x 107 1.52 x 10—*
50 0.0368631686  0.0368630034 0.0368736021 4.48 x 10°° 2.83x10~*
180 | 0.0368411536 0.0368414484 0.0368357466 8.00 x 1076  1.46 x 10~*
360 | 0.0368368930 0.0368342265 0.0368466261 7.23 x 10~ 2.64 x 10—*
p=-07
N Ref. SWIFT MC REswirt REymc
5 | 0.0375737983 0.0375740073 0.0375539243 5.56 x 10~ ° 528 x 107
12 | 0.0371685246 0.0371687309 0.0371532126 5.55 x 10~® 4.11 x 10~*
50 0.0369172829  0.0369172021 0.0369199786 2.18 x 10~° 7.30 x 10~°
180 | 0.0368564120 0.0368549997  0.0368514021 3.83x 105 1.35 x 10~*
360 | 0.0368445443  0.0368489009 0.0368522457 1.18 x 10~* 2.09 x 10~*
Table: Variance Swaps: mg =40, Set |, T =1 r = 0.05.
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Realized variance swaps (Set Il)

p=—0.1
N Ref. SWIFT MC RESW/FT REMC
5 0.4067078727 0.4067086532 0.4065423061 1.91 x10°% 4.07 x 10~ %
12 0.4029056015 0.4029060040 0.4027957415 9.99 x 107 2.72x 10~*
50 0.4007139003 0.4007139406 0.4008416719 1.00 x 10~7 3.18 x 10~*
180 | 0.4001994199 0.4001993773 0.4002238554 1.06 x 10~7  6.10 x 10~°
360 | 0.4000998185 0.4000997601 0.4000181976  1.46 x 10~7  2.04 x 10~*
p=-07
N Ref. SWIFT MC REswiFT REw
5 | 0.4166286485 0.416631041793736 0.4167251660 5.74 x 107 ° 231 x 10~*
12 0.4075137267 0.4075104743 0.4073002992 7.98x10°% 523x 104
50 0.4018902561 0.4018867030 0.4019702179 8.84 x 10~° 1.98 x 10~*
180 | 0.4005309091 0.4005272887 0.4006611714 9.03x 106 3.25x 10~*
360 | 0.4002660232 0.4002623900 0.4001430561 9.07 x 106 3.07 x 10~*
Table: Variance Swaps: mg =40, Set Il, T =1 r = 0.05.
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Realized variance option

p=-0.1 p=-07

K Ref.(MC) SWIFT RE Ref.(MC) SWIFT RE
0.01 | 0.02567765 0.02568006 9.40 x 10> 0.02587552 0.02586686 3.34 x 10— %
0.02 | 0.01699106 0.01701443 1.37 x 1073 0.01712666 0.01710650 1.17 x 103
0.03 | 0.01045427 0.01044283 1.09 x 103 0.01053466  0.01054260 7.57 x 10—*
0.04 | 0.00613621 0.00613145 7.75 x 10—* 0.00631007 0.00633681 4.23 x 103
0.05 | 0.00351388 0.00352261 2.48 x 103 0.00380057 0.00380673 1.62 x 103
Table: Variance Call Options: mg =40, T =1, r = 0.05, N = 12. Heston Set I.

p=—0.1 p=-07

K | Ref(MC) SWIFT RE Ref.(MC) SWIFT RE

0.1 | 0.28810430 0.28826035 5.41 x 10~* 0.29269761 0.29262732 2.40 x 10~ %
0.2 0.19753250 0.19753794 2.75 x 10~° 0.20203744  0.20184267 9.64 x 10—*
0.3 | 0.12269943 0.12276166 5.07 x 10~* || 0.12730330 0.12737500 5.63 x 10~*
0.4 | 0.07050097 0.07054838 6.72 x 10~ 0.07568155 0.07567259 1.18 x 10—*
0.5 | 0.03826162 0.03836334 2.65 x 10~3 0.04341057 0.04352151 2.55 x 103

Table: Variance Call Options:
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Arithmetic Asian option (Set I)

N =12

K(%o0fSo) Ref (MC) SWIFT RE
80% 21.5285835237  21.5270366207  7.18 x 10
90% 12.5823808044  12.5896547750 5.78 x 104
100% 5.4002621022  5.4000546644  3.84 x 105
110% 1.3880527793  1.3906598970  1.87 x 103
120% 0.1736330491  0.1731034094  3.05 x 103

N = 50

K (%o0fSo) Ref.(MC) SWIFT RE
80% 21.5386392371  21.5339280578 2.18 x 10 *
90% 12.6239658563  12.6182127196  4.55 x 104
100% 54504220302  5.4499634141  8.41 x 105
110% 1.4205579101  1.4275471040  1.40 x 103
120% 0.1824925012  0.1831473714  3.58 x 103

N = 250

K(%0fSo) Ref (MC) SWIFT RE
80% 21.5266346261  21.5359313401 4.31 x 107
90% 12.6269859960  12.6261325064  6.75 x 105
100% 5.4534882341  5.4636939471  1.87 x 103
110% 1.4440810439  1.4378101025  4.34 x 10~3
120% 0.1875776074  0.1860298190  8.25 x 103

Table: Tavella-Randall, mg = 40, Set I, call, option, Sop.= 100, T-= 1,-r =0.05.
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Arithmetic Asian option (Set II)

N =12

K (%0fSp) Ref.(MC) SWIFT RE
80% 25.5585678735  25.5988860602 1.57 x 103
90% 19.6670725943  19.6278689575 1.99 x 103
100% 14.8962382700 14.8552716759 2.75 x 103
110% 11.1517895745  11.1463503256 4.87 x 10~*
120% 8.3165299338  8.3212712111  5.70 x 10~*

N =50

K (%0fSy) Ref.(MC) SWIFT RE
80% 25.7824036750 25.7778794489 1.75 x 10— %
90% 19.8263899575  19.8272466858 4.32 x 10~°
100% 15.0530165896  15.0529723969  2.93 x 106
110% 11.3291439277  11.3270969069 1.80 x 10—*
120% 8.4614191560  8.4772028373  1.86 x 103

N = 250

K (%0fSp) Ref.(MC) SWIFT RE
80% 25.8641465886  25.8255340288 1.49 x 103
90% 19.9219203435  19.8806560654 2.07 x 103
100% 15.1245760541  15.1064333350 1.19 x 103
110% 11.3793305624  11.3765266399  2.46 x 10—*
120% 8.5254366308  8.5203790223  5.93 x 10~*

Table: Tavella-Randall, mg = 40, Set I, call, option, Sg = 100, T = 1; r = 0.05.
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Conclusions

@ This work provides a general, computationally efficient, and robust
valuation framework under the CTMC-Heston model.

@ This model approximation provides a parsimonious and faithful
representation of the Heston model, and it is able to reproduce the
same volatility smile structure with a modest number of states.

@ We can efficiently price a large variety of contracts which are
exceptionally difficult to handle under Heston's model.

@ The efficiency of the method is obtained by combining the CTMC
approximation of the variance, with the SWIFT Fourier method.

@ An extensive set of numerical experiments were provided, analyzing
Asian options and discretely sampled realized variance derivatives.

@ A detailed error analysis will follow (work in progress).

A. Leitao & J.L. Kirkby & L. Ortiz-Gracia CTMC-Heston model July 12, 2019 28 / 30



References

@ Zhenyu Cui, Justin L. Kirkby, and Duy Nguyen.
Springer IMA volume: Recent Developments in Financial and Economic Applications,
chapter Continuous-Time Markov Chain and Regime Switching approximations with
applications to options pricing.
Forthcoming, Springer, 2019.

@ Alvaro Leitao, Luis Ortiz-Gracia, and Emma |. Wagner.
SWIFT valuation of discretely monitored arithmetic Asian options.
Journal of Computational Science, 28:120-139, 2018.

@ Chia Chun Lo and Konstantinos Skindilias.
An improved Markov chain approximation methodology: derivatives pricing and model
calibration.
International Journal of Theoretical and Applied Finance, 17(07):1450047, 2014.

@ Aleksandar Mijatovi¢ and Martijn Pistorius.
Continuously monitored barrier options under Markov processes.
Mathematical Finance, 23(1):1-38, 2013.

@ Domingo Tavella and Curt Randall.
Pricing Financial Instruments: The Finite Difference Method.
Wiley, 2000.

A. Leitao & J.L. Kirkby & L. Ortiz-Gracia CTMC-Heston model July 12, 2019 29 / 30



Acknowledgements & Questions

EXCELENCIA
MARIA
DE MAEZTU

Thanks to support from MDM-2014-0445

More: alvaroleitao.github.io

Thank you for your attention

CTMC-Heston model July 12, 2019

30 / 30



e Given a grid of points v = {vi, vo, ..., Vm, } with grid spacings
hi = vj;1 — v;, and assuming that Va(t) takes values on v, the
elements g;; of the generator Q for the CTMC approximation of the
process v; read

~(v; 20vY = (B 10— (v: oy
Y (VI) + g (VI) (hlfll'l’ (VI)+hI/’[/ (V/))’ fi—i—1,
hi—1 hi_1(hi_1 + h;)
+(\. 2(\,.) hi 1u~ ; hi + .
gii = Y (V/) +U (VI) ( i—1H (V)7L ol (V))’ =i,
’ hi hi (hi—1 + h;)
— qii-1 — qi,i+1, if j =1,
0, otherwise,

with the notation z* = max(+£z,0). Further, to guarantee a
well-defined probability matrix, the following condition must be
satisfied:

max (h) <_min (”2(”)).

1<i<mg T 1<i<mo \ |p(v;)]
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