# Continuous Time Markov Chain approximation of the Heston model

Álvaro Leitao, Justin L. Kirkby and Luis Ortiz-Gracia



## ICCF 2019

July 12, 2019

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

CTMC-Heston model

July 12, 2019 1 / 30

### Motivation

- The Heston model is a widely utilized stochastic volatility (SV) models in the option pricing literature as well as in practice.
- For a fixed time horizon, the characteristic function (ChF) is known in closed-form.
- Then, European option pricing is efficiently accomplished with any standard Fourier method.
- Enabling a fast calibration of the Heston model parameters to match observed volatility surfaces, as required in practice.
- However, after calibration there is still great difficulty in pricing exotic contracts under the Heston model.
- To price contracts such as Asian options and variance swaps, Monte Carlo (MC) methods are the traditional surrogates in these cases.
- Unfortunately, MC suffers from a number of well known deficiencies, and complicated simulation schemes are often required to overcome the boundary effects that accompany models such as Heston.

#### What we propose

- The practical objective of this work is to formalize a model which reproduces vanilla market quotes, but is at the same time amenable to complex derivative pricing in a manner that is consistent with the calibrated model.
- We propose a model and framework based on the Heston model. We call this the CTMC-Heston model, as it uses a finite state *Continuous Time Markov Chain* (CTMC) approximation to the variance process.
- The new formulation enables a closed-form solution for the ChF of the underlying (log-)returns, which allows the use of Fourier inversion techniques to efficiently price exotics.
- We provide numerical studies which demonstrate convergence to Heston's model as the state space is refined. A detailed theoretical analysis of the method will follow.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

#### Outline





2 Calibration of the CTMC-Heston model

#### Application: Pricing Exotic options under CTMC-Heston model



Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

ELE NOR

A B F A B F

#### From Heston model to CTMC-Heston model

• The Heston stochastic volatility model,

$$\begin{aligned} \frac{\mathrm{d}S_t}{S_t} &= (r-q)\mathrm{d}t + \sqrt{v_t}\mathrm{d}W_t^1, \\ \mathrm{d}v_t &= \eta(\theta - v_t)dt + \sigma_v\sqrt{v_t}\mathrm{d}W_t^2, \end{aligned}$$
(1)

where  $dW_t^1$  and  $dW_t^2$  are correlated Brownian motions, i.e.  $dW_t^1 dW_t^2 = \rho dt$ , with  $\rho \in (-1, 1)$ .

- The stochastic volatility (or variance), *v*<sub>t</sub>, is driven by a *CIR* process, having a mean reversion component.
- Value v<sub>0</sub> is the initial volatility, η controls the mean reversion speed while θ is the long-term volatility and σ<sub>v</sub> corresponds to the volatility of the variance process v<sub>t</sub>, also known as vol-vol (volatility-of-volatility).
- The model parameters are therefore  $\Theta = \{v_0, \eta, \theta, \sigma_v, \rho\}.$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ 三回 ののの

• The Heston's model solution can be re-expressed in the form

$$\log\left(\frac{S_t}{S_0}\right) = \frac{\rho}{\sigma_v} \left(v_t - v_0\right) + \left(r - q\right)t - \frac{1}{2} \int_0^t v_s \mathrm{d}s$$
$$-\frac{\rho}{\sigma_v} \int_0^t \eta(\theta - v_s) \mathrm{d}s + \sqrt{1 - \rho^2} \int_0^t \sqrt{v_s} \mathrm{d}W_s^*,$$

where  $W_t^1 := \rho W_t^2 + \sqrt{1 - \rho^2} W_t^*$  and  $W_t^*$  is independent from  $W_t^2$ . • Rearranging, we introduce the auxiliary process  $(\widetilde{X}_t)_{t \ge 0}$ ,

$$\begin{split} \widetilde{X}_t &:= \log\left(\frac{S_t}{S_0}\right) - \frac{\rho}{\sigma_v}(v_t - v_0) \\ &= \left(r - q - \frac{\rho\eta\theta}{\sigma_v}\right)t + \left(\frac{\rho\eta}{\sigma_v} - \frac{1}{2}\right)\int_0^t v_s \mathrm{d}s + \sqrt{1 - \rho^2}\int_0^t \sqrt{v_s} \mathrm{d}W_s^*. \end{split}$$

• We thus have the following uncoupled two-factor representation,

$$d\widetilde{X}_t = \left[ \left( \frac{\rho \eta}{\sigma_v} - \frac{1}{2} \right) v_t + \bar{\omega} \right] dt + \sqrt{(1 - \rho^2) v_t} dW_t^*, dv_t = \mu(v_t) dt + \sigma(v_t) dW_t^2,$$

where  $\bar{\omega} := (r - q - \frac{\rho \eta \theta}{\sigma_v})$ ,  $\mu(v_t) := \eta(\theta - v_t)$  and  $\sigma(v_t) := \sigma_v \sqrt{v_t}$ .

#### CTMC-Heston model

• Given a state-space  $\mathbf{v} := \{v_1, \dots, v_{m_0}\}$ , and a CTMC  $\{\alpha(t), t \ge 0\}$  transitioning between the indexes  $\{1, \dots, m_0\}$  according to

$$\mathbb{Q}\{\alpha(t+\Delta t)=j|\alpha(t)=k\}=\delta_{jk}+q_{jk}\Delta t+o(\Delta t).$$

- The set of transition rates  $q_{jk}$  form the generator matrix  $Q_{m_0 \times m_0}$ , chosen so that  $(v_{\alpha(t)})_{t \ge 0}$  are locally consistent with  $(v_t)_{t \ge 0}$ .
- Given (v<sub>α(t)</sub>)<sub>t≥0</sub>, X̃<sub>t</sub> is approximated by a Regime Switching (RS) diffusion,

$$\begin{split} \widetilde{X}_t^{\alpha} &= \bar{\omega}t + \int_0^t \left(\frac{\rho\eta}{\sigma_v} - \frac{1}{2}\right) v_{\alpha(s)} ds + \sqrt{1 - \rho^2} \int_0^t \sqrt{v_{\alpha(s)}} dW^*(s) \\ &= \int_0^t \zeta_{\alpha(s)} ds + \int_0^t \beta_{\alpha(s)} dW^*(s), \end{split}$$

where for  $\alpha(s) \in \{1, \ldots, m_0\}$ ,

$$\zeta_{\alpha(s)} := \left(r - q - \frac{\rho \eta \theta}{\sigma_{v}}\right) + \left(\frac{\rho \eta}{\sigma_{v}} - \frac{1}{2}\right) v_{\alpha(s)}, \quad \beta_{\alpha(s)} := \sqrt{(1 - \rho^{2})v_{\alpha(s)}}.$$

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

 Main advantage: the new formulation enables a closed-form expression for the conditional ChF. Given Δt > 0, ∀j = 1,..., m<sub>0</sub>,

$$\begin{split} \widetilde{\phi}_{\widetilde{X}_{\Delta t}^{\alpha}}^{j}(\xi) &:= \mathbb{E}[e^{i\xi\widetilde{X}_{\Delta t}^{\alpha}} | \alpha(0 \leq s \leq \Delta t) = j] \\ &= \mathbb{E}\left[\exp\left(i\xi\left(\zeta_{j}\Delta t + \beta_{j}W^{*}(\Delta t)\right)\right)\right] := \exp(\psi_{j}(\xi)\Delta t), \end{split}$$

where  $\psi_j(\xi) = i\zeta_j\xi - \frac{1}{2}\xi^2\beta_j^2, j = 1, \dots, m_0$ . is its Lévy symbol.

- The process  $\widetilde{X}_t^{\alpha}$  is completely characterized by the set  $\{\psi_j(\xi)\}_{j=1}^{m_0}$ , together with the generator Q.
- The ChF of  $\widetilde{X}^{\alpha}_{\Delta t}$ ,  $\Delta t \ge 0$ , conditioned on the initial state  $\alpha(0) = j_0$ ,  $\mathbb{E}\left[e^{i\widetilde{X}^{\alpha}_{\Delta t}\xi}|\alpha(0) = j_0\right] = \mathbf{1}'\mathcal{M}(\xi;\Delta t)\mathbf{e}_{j_0}, \quad j_0 \in \{1,\ldots,m_0\}$

where we define the matrix exponential

$$\mathcal{M}(\xi; \Delta t) := \exp\left(\Delta t \left(Q' + \operatorname{diag}(\psi_1(\xi), \dots, \psi_{m_0}(\xi))\right),\right)$$

and  $\mathbf{1} \in \mathbb{R}^{m_0}$  represents a column vector of ones, and  $\mathbf{e}_j \in \mathbb{R}^{m_0}$  a unit column vector with a one in position j.

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

CTMC-Heston model

•  $\widetilde{X}^{\alpha}_{\Delta t}$  induces the following *CTMC-Heston model* for the underlying  $S_{\Delta t}$ , namely

$$S^{\alpha}_{\Delta t} = S_0 \exp\left(\widetilde{X}^{\alpha}_{\Delta t} + rac{
ho}{\sigma_v}(v_{\alpha(\Delta t)} - v_{\alpha(0)})
ight).$$

The conditional ChF of the log-increment

$$R^{\alpha}_{\Delta t} := \log(S^{\alpha}_{\Delta t}/S_0) = \widetilde{X}^{\alpha}_{\Delta t} + \frac{\rho}{\sigma_v}(v_{\alpha(\Delta t)} - v_{\alpha(0)}),$$

is recovered in closed-form as

$$\mathbb{E}[e^{iR_{\Delta t}^{\alpha}\xi}|\alpha(0) = j, \alpha(\Delta t) = k] = \mathcal{M}_{k,j}(\xi; \Delta t) \cdot \exp\left(i\xi\frac{\rho}{\sigma_{v}}(v_{k} - v_{j})\right)$$
$$:= \widetilde{\mathcal{M}}_{k,j}(\xi; \Delta t).$$

which follows from conditional independence.

 We can view the CTMC-Heston model as both an approximation to Heston's model, as well as a tractable model in its own right.

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

CTMC-Heston model

### Calibration of the CTMC-Heston model

- As a Fourier inversion method we employ *SWIFT*, which has several important advantages which make it well-suited for calibration:
  - ▶ **Error control**. It is probably the most relevant property within an optimization problem. Thanks to the use of Shannon wavelets, SWIFT establishes a bound in the error given any scale *m* of approximation.
  - ▶ **Robustness**. SWIFT provides mechanisms to determine all the free parameters in the approximation made based on the scale *m* which, as mentioned in the previous point, determines the committed error.
  - Performance efficiency. As other Fourier inversion techniques, SWIFT is an extremely fast algorithm, allowing FFT, vectorized operations or even parallel computing features.
  - Accuracy. Although an error bound is provided, SWIFT has demonstrated a very high precision in most situations, far below the predicted error bound and, at least, comparable with the state-of-the-art methodologies.
- The properties mentioned above ensure high quality estimations in the calibration process, reducing the chances of any possible malfunctioning or divergence in the optimization procedure.

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

#### Grid selection

- Our goal is to form a model which parsimoniously resembles Heston.
- One of the key aspects in designing the CTMC-Heston model is a specification for the variance state-space (grid).
- Several conceptually different approaches available in the literature.



Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

## CTMC: numerical study

#### • Data sets: two representative scenarios.

|        | scenario        | V <sub>0</sub> | $\eta$ | $\theta$ | $\sigma_{v}$ | ρ    |
|--------|-----------------|----------------|--------|----------|--------------|------|
| Set I  | regular market  | 0.03           | 3.0    | 0.04     | 0.25         | -0.7 |
| Set II | stressed market | 0.4            | 3.0    | 0.4      | 0.5          | -0.1 |

• Convergence in *m*<sub>0</sub>.



Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

CTMC-Heston model

July 12, 2019 12 / 30

#### Influence of the model parameters



Figure: Set I: put option,  $S_0 = 100$ , K = 100, r = 0.05 and T = 1.

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

CTMC-Heston model

July 12, 2019 13 / 30

#### Influence of the model parameters



Figure: Set II: put option,  $S_0 = 100$ , K = 100, r = 0.05 and T = 1.

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

July 12, 2019 14 / 30

#### Calibration with real data (Microsoft, January 2019)



Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

CTMC-Heston model

July 12, 2019 15 / 30

#### Calibration with real data (Google, January 2019)



Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

CTMC-Heston model

### Interesting lessons

- All the approaches provide numerical convergence in  $m_0$ .
- The error decays very fast at the beginning, with smaller  $m_0$ , and smoothens for bigger  $m_0$ , suggesting a damping effect.
- The grid distribution proposed by Lo and Skindilias provides, in general, poorer estimations.
- Although the uniform approach performs surprisingly well in the test with synthetic parameters, the real calibration experiment shows a pretty inaccurate estimations for options far from at-the-money strike.
- The schemes by Mijatovic-Pistorius and Tavella-Randall perform similarly. It is worth noting that the first explodes when the initial and long-term volatilities differ greatly one from the other. The second happens to be the most robust and precise choice in general.
- By focusing on the correlation parameter, ρ, in the second test, we observe that the error tends to be minimum close to the no-correlation point (ρ = 0), and it degrades when ρ ventures far form zero.

#### Application: Exotic options under CTMC-Heston model

- Once calibrated, a model is commonly employed to price more involved products (early-exercise, path-dependent, etc.).
- Many exotic products can be defined in terms of a generic recursion.
- Consider N + 1 monitoring dates,  $0 = t_0 < t_1 < \cdots < t_N = T$ . We define the log returns  $R_n$  by

$$R_n := \log\left(\frac{S_n}{S_{n-1}}\right), \quad S_n := S(t_n), \quad n = 1, ..., N.$$

• The contracts of interest satisfy a very general sequence of equations  $Y_1 := w_N \cdot h(R_N) + \varrho_N$   $Y_n := w_{N-(n-1)} \cdot h(R_{N-(n-1)}) + g(Y_{n-1}) + \varrho_{N-(n-1)}, \quad n = 2, ..., N,$ 

where h, g are continuous functions,  $\{w_n\}_{n=1}^N$  is a set of weights, and  $\{\varrho_n\}_{n=1}^N$  is a set of shift parameters. Includes contracts of the form

$$G\left(\sum_{n=1}^{N} w_n \cdot h(R_n); \Theta\right)_{\square}.$$

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

CTMC-Heston model

July 12, 2019 18 / 30

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ●

- Prominent examples of contracts which fall within this framework.
  - Realized variance swaps and options:

$$A_N = \frac{1}{T} \sum_{n=1}^{N} (R_n)^2$$
 and  $A_N = \frac{1}{T} \sum_{n=1}^{N} (\exp(R_n) - 1)^2$ ,

with  $G(A_N) := A_N - K$  (swap), and  $G(A_N) := (A_N - K)^+$  (call). • **Cliquets:** with local (global) floor and cap  $F, G(F_g, G_g)$ ,

$$A_N = \sum_{n=1}^N \max(F, \min(C, \exp(R_n) - 1)),$$

with  $G(A_N) = K \cdot \min(C_g, \max(F_g, A_N))$ . • Arithmetic (weighted) Asian Options:

$$\begin{split} A_{N} &:= \frac{1}{N+1} \sum_{n=0}^{N} w_{n} S_{n} \\ &= \frac{S_{0}}{N+1} \left( w_{0} + e^{R_{1}} \left( w_{1} + e^{R_{2}} \left( \cdots e^{R_{N-1}} \left( w_{N-1} + w_{N} e^{R_{N}} \right) \right) \right) \right), \end{split}$$

where  $G(A_N) := (A_N - K)^+$  for a call option.

EN ELE NOR

#### Numerical experiments with exotic options

- We will present some experiments aiming to numerically validate the introduced CTMC-Heston model.
- We will consider several exotic contracts: realized variance swaps, realized variance options and Asian options.
- The recursive definition above allows efficient Fourier methods (SWIFT).
- The realized variance swaps are chosen for comparative purposes, since an exact solution for the Heston model is available.
- That is not the case for the other two products, which often require the use of MC methods.
- Computer system CPU Intel Core i7-4720HQ 2.6GHz, 16GB RAM and Matlab R2017b.
- Based on the calibration tests, Tavella-Randall scheme is used.
- $\bullet\,$  MC setting: QE scheme with  $10^6$  paths and 360 time steps.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨヨ ののの

### Convergence in $m_0$



Figure: Variance Swaps: r = 0.05 and T = 1. Heston parameters: Set I (regular market). Grid Design: Tavella-Randall.

ELE NOR

### Convergence in $m_0$



Figure: Variance Swaps: r = 0.05 and T = 1. Heston parameters: Set II (stressed market). Grid Design: Tavella-Randall.

-

I= nan

#### Realized variance swaps (Set I)

|     |              |              | ho = -0.1    |                      |                    |
|-----|--------------|--------------|--------------|----------------------|--------------------|
| N   | Ref.         | SWIFT        | MC           | RE <sub>SWIFT</sub>  | RE <sub>MC</sub>   |
| 5   | 0.0371205474 | 0.0371205820 | 0.0371242281 | $9.32 	imes 10^{-7}$ | $9.91	imes10^{-5}$ |
| 12  | 0.0369570905 | 0.0369571055 | 0.0369627242 | $4.06	imes10^{-7}$   | $1.52	imes10^{-4}$ |
| 50  | 0.0368631686 | 0.0368630034 | 0.0368736021 | $4.48	imes10^{-6}$   | $2.83	imes10^{-4}$ |
| 180 | 0.0368411536 | 0.0368414484 | 0.0368357466 | $8.00	imes10^{-6}$   | $1.46	imes10^{-4}$ |
| 360 | 0.0368368930 | 0.0368342265 | 0.0368466261 | $7.23	imes10^{-5}$   | $2.64	imes10^{-4}$ |
|     |              |              | ho = -0.7    |                      |                    |
| N   | Ref.         | SWIFT        | MC           | RE <sub>SWIFT</sub>  | RE <sub>MC</sub>   |
| 5   | 0.0375737983 | 0.0375740073 | 0.0375539243 | $5.56	imes10^{-6}$   | $5.28	imes10^{-4}$ |
| 12  | 0.0371685246 | 0.0371687309 | 0.0371532126 | $5.55	imes10^{-6}$   | $4.11	imes10^{-4}$ |
| 50  | 0.0369172829 | 0.0369172021 | 0.0369199786 | $2.18	imes10^{-6}$   | $7.30	imes10^{-5}$ |
| 180 | 0.0368564120 | 0.0368549997 | 0.0368514021 | $3.83	imes10^{-5}$   | $1.35	imes10^{-4}$ |
| 360 | 0.0368445443 | 0.0368489009 | 0.0368522457 | $1.18	imes10^{-4}$   | $2.09	imes10^{-4}$ |

Table: Variance Swaps:  $m_0 = 40$ , Set I, T = 1 r = 0.05.

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

<ロ> < 部> < 語> < 語> < 語 > 2000

#### Realized variance swaps (Set II)

|     |              | ŀ                 | p = -0.1     |                     |                       |
|-----|--------------|-------------------|--------------|---------------------|-----------------------|
| N   | Ref.         | SWIFT             | MC           | RE <sub>SWIFT</sub> | RE <sub>MC</sub>      |
| 5   | 0.4067078727 | 0.4067086532      | 0.4065423061 | $1.91	imes10^{-6}$  | $4.07 	imes 10^{-4}$  |
| 12  | 0.4029056015 | 0.4029060040      | 0.4027957415 | $9.99	imes10^{-7}$  | $2.72 \times 10^{-4}$ |
| 50  | 0.4007139003 | 0.4007139406      | 0.4008416719 | $1.00	imes10^{-7}$  | $3.18 	imes 10^{-4}$  |
| 180 | 0.4001994199 | 0.4001993773      | 0.4002238554 | $1.06	imes10^{-7}$  | $6.10 	imes 10^{-5}$  |
| 360 | 0.4000998185 | 0.4000997601      | 0.4000181976 | $1.46	imes10^{-7}$  | $2.04	imes10^{-4}$    |
|     |              | ŀ                 | p = -0.7     |                     |                       |
| N   | Ref.         | SWIFT             | MC           | RE <sub>SWIFT</sub> | RE <sub>MC</sub>      |
| 5   | 0.4166286485 | 0.416631041793736 | 0.4167251660 | $5.74	imes10^{-6}$  | $2.31	imes10^{-4}$    |
| 12  | 0.4075137267 | 0.4075104743      | 0.4073002992 | $7.98	imes10^{-6}$  | $5.23 	imes 10^{-4}$  |
| 50  | 0.4018902561 | 0.4018867030      | 0.4019702179 | $8.84	imes10^{-6}$  | $1.98 	imes 10^{-4}$  |
| 180 | 0.4005309091 | 0.4005272887      | 0.4006611714 | $9.03	imes10^{-6}$  | $3.25 	imes 10^{-4}$  |
| 360 | 0.4002660232 | 0.4002623900      | 0.4001430561 | $9.07	imes10^{-6}$  | $3.07 	imes 10^{-4}$  |

Table: Variance Swaps:  $m_0 = 40$ , Set II, T = 1 r = 0.05.

<ロ> < 部> < 語> < 語> < 語 > 2000

#### Realized variance option

|      |            | ho = -0.1  |                    |            | ho = -0.7  |                    |
|------|------------|------------|--------------------|------------|------------|--------------------|
| K    | Ref.(MC)   | SWIFT      | RE                 | Ref.(MC)   | SWIFT      | RE                 |
| 0.01 | 0.02567765 | 0.02568006 | $9.40	imes10^{-5}$ | 0.02587552 | 0.02586686 | $3.34	imes10^{-4}$ |
| 0.02 | 0.01699106 | 0.01701443 | $1.37	imes10^{-3}$ | 0.01712666 | 0.01710650 | $1.17	imes10^{-3}$ |
| 0.03 | 0.01045427 | 0.01044283 | $1.09	imes10^{-3}$ | 0.01053466 | 0.01054260 | $7.57	imes10^{-4}$ |
| 0.04 | 0.00613621 | 0.00613145 | $7.75	imes10^{-4}$ | 0.00631007 | 0.00633681 | $4.23	imes10^{-3}$ |
| 0.05 | 0.00351388 | 0.00352261 | $2.48	imes10^{-3}$ | 0.00380057 | 0.00380673 | $1.62	imes10^{-3}$ |

Table: Variance Call Options:  $m_0 = 40$ , T = 1, r = 0.05, N = 12. Heston Set I.

|     |            | ho = -0.1  |                    |            | ho = -0.7  |                      |
|-----|------------|------------|--------------------|------------|------------|----------------------|
| K   | Ref.(MC)   | SWIFT      | RE                 | Ref.(MC)   | SWIFT      | RE                   |
| 0.1 | 0.28810430 | 0.28826035 | $5.41	imes10^{-4}$ | 0.29269761 | 0.29262732 | $2.40 	imes 10^{-4}$ |
| 0.2 | 0.19753250 | 0.19753794 | $2.75	imes10^{-5}$ | 0.20203744 | 0.20184267 | $9.64	imes10^{-4}$   |
| 0.3 | 0.12269943 | 0.12276166 | $5.07	imes10^{-4}$ | 0.12730330 | 0.12737500 | $5.63	imes10^{-4}$   |
| 0.4 | 0.07050097 | 0.07054838 | $6.72	imes10^{-4}$ | 0.07568155 | 0.07567259 | $1.18	imes10^{-4}$   |
| 0.5 | 0.03826162 | 0.03836334 | $2.65	imes10^{-3}$ | 0.04341057 | 0.04352151 | $2.55	imes10^{-3}$   |

Table: Variance Call Options:  $m_0 = 40$ , T = 1, r = 0.05, N = 12. Heston Set II.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Arithmetic Asian option (Set I)

|                | N             | = 12          |                    |
|----------------|---------------|---------------|--------------------|
| $K(\% of S_0)$ | Ref.(MC)      | SWIFT         | RE                 |
| 80%            | 21.5285835237 | 21.5270366207 | $7.18	imes10^{-5}$ |
| 90%            | 12.5823808044 | 12.5896547750 | $5.78	imes10^{-4}$ |
| 100%           | 5.4002621022  | 5.4000546644  | $3.84	imes10^{-5}$ |
| 110%           | 1.3880527793  | 1.3906598970  | $1.87	imes10^{-3}$ |
| 120%           | 0.1736330491  | 0.1731034094  | $3.05	imes10^{-3}$ |
|                |               | N = 50        |                    |
| $K(\% of S_0)$ | Ref.(MC)      | SWIFT         | RE                 |
| 80%            | 21.5386392371 | 21.5339280578 | $2.18	imes10^{-4}$ |
| 90%            | 12.6239658563 | 12.6182127196 | $4.55	imes10^{-4}$ |
| 100%           | 5.4504220302  | 5.4499634141  | $8.41	imes10^{-5}$ |
| 110%           | 1.4295579101  | 1.4275471949  | $1.40	imes10^{-3}$ |
| 120%           | 0.1824925012  | 0.1831473714  | $3.58	imes10^{-3}$ |
|                |               | N = 250       |                    |
| $K(\% of S_0)$ | Ref.(MC)      | SWIFT         | RE                 |
| 80%            | 21.5266346261 | 21.5359313401 | $4.31	imes10^{-4}$ |
| 90%            | 12.6269859960 | 12.6261325064 | $6.75	imes10^{-5}$ |
| 100%           | 5.4534882341  | 5.4636939471  | $1.87	imes10^{-3}$ |
| 110%           | 1.4440819439  | 1.4378101025  | $4.34	imes10^{-3}$ |
| 120%           | 0.1875776074  | 0.1860298190  | $8.25	imes10^{-3}$ |

Table: Tavella-Randall,  $m_0 = 40$ , Set I, call, option,  $S_0 = 100$ ,  $T_{\pm} = 1$ ,  $\kappa = 0.05$ 

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

CTMC-Heston model

#### Arithmetic Asian option (Set II)

|                | N             | = 12          |                    |
|----------------|---------------|---------------|--------------------|
| $K(\% of S_0)$ | Ref.(MC)      | SWIFT         | RE                 |
| 80%            | 25.5585678735 | 25.5988860602 | $1.57	imes10^{-3}$ |
| 90%            | 19.6670725943 | 19.6278689575 | $1.99	imes10^{-3}$ |
| 100%           | 14.8962382700 | 14.8552716759 | $2.75	imes10^{-3}$ |
| 110%           | 11.1517895745 | 11.1463503256 | $4.87	imes10^{-4}$ |
| 120%           | 8.3165299338  | 8.3212712111  | $5.70	imes10^{-4}$ |
|                |               | N = 50        |                    |
| $K(\% of S_0)$ | Ref.(MC)      | SWIFT         | RE                 |
| 80%            | 25.7824036750 | 25.7778794489 | $1.75	imes10^{-4}$ |
| 90%            | 19.8263899575 | 19.8272466858 | $4.32	imes10^{-5}$ |
| 100%           | 15.0530165896 | 15.0529723969 | $2.93	imes10^{-6}$ |
| 110%           | 11.3291439277 | 11.3270969069 | $1.80	imes10^{-4}$ |
| 120%           | 8.4614191560  | 8.4772028373  | $1.86	imes10^{-3}$ |
|                |               | N = 250       |                    |
| $K(\% of S_0)$ | Ref.(MC)      | SWIFT         | RE                 |
| 80%            | 25.8641465886 | 25.8255340288 | $1.49	imes10^{-3}$ |
| 90%            | 19.9219203435 | 19.8806560654 | $2.07	imes10^{-3}$ |
| 100%           | 15.1245760541 | 15.1064333350 | $1.19	imes10^{-3}$ |
| 110%           | 11.3793305624 | 11.3765266399 | $2.46	imes10^{-4}$ |
| 120%           | 8.5254366308  | 8.5203790223  | $5.93	imes10^{-4}$ |

Table: Tavella-Randall,  $m_0 = 40$ , Set II, call, option,  $S_0 = 100$ , T = 1, r = 0.05

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

CTMC-Heston model

July 12, 2019 27 / 30

### Conclusions

- This work provides a general, computationally efficient, and robust valuation framework under the CTMC-Heston model.
- This model approximation provides a parsimonious and faithful representation of the Heston model, and it is able to reproduce the same volatility smile structure with a modest number of states.
- We can efficiently price a large variety of contracts which are exceptionally difficult to handle under Heston's model.
- The efficiency of the method is obtained by combining the CTMC approximation of the variance, with the SWIFT Fourier method.
- An extensive set of numerical experiments were provided, analyzing Asian options and discretely sampled realized variance derivatives.
- A detailed error analysis will follow (work in progress).

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### References

|  |  | 2 |
|--|--|---|
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |

#### Zhenyu Cui, Justin L. Kirkby, and Duy Nguyen.

Springer IMA volume: Recent Developments in Financial and Economic Applications, chapter Continuous-Time Markov Chain and Regime Switching approximations with applications to options pricing. Forthcoming, Springer, 2019.

Álvaro Leitao, Luis Ortiz-Gracia, and Emma I. Wagner. SWIFT valuation of discretely monitored arithmetic Asian options. Journal of Computational Science, 28:120–139, 2018.

#### Chia Chun Lo and Konstantinos Skindilias.

An improved Markov chain approximation methodology: derivatives pricing and model calibration.

International Journal of Theoretical and Applied Finance, 17(07):1450047, 2014.



Aleksandar Mijatović and Martijn Pistorius. Continuously monitored barrier options under Markov processes. *Mathematical Finance*, 23(1):1–38, 2013.

Domingo Tavella and Curt Randall.

Pricing Financial Instruments: The Finite Difference Method. Wiley, 2000.

#### Acknowledgements & Questions



Thanks to support from MDM-2014-0445

More: alvaroleitao.github.io

## Thank you for your attention

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

CTMC-Heston model

• Given a grid of points  $\mathbf{v} = \{v_1, v_2, \dots, v_{m_0}\}$  with grid spacings  $h_i = v_{i+1} - v_i$ , and assuming that  $v_{\alpha(t)}$  takes values on  $\mathbf{v}$ , the elements  $q_{ij}$  of the generator Q for the CTMC approximation of the process  $v_t$  read

$$q_{ij} = \begin{cases} \frac{\mu^{-}(v_i)}{h_{i-1}} + \frac{\sigma^{2}(v_i) - (h_{i-1}\mu^{-}(v_i) + h_{i}\mu^{+}(v_i))}{h_{i-1}(h_{i-1} + h_{i})}, & \text{if } j = i-1, \\ \frac{\mu^{+}(v_i)}{h_i} + \frac{\sigma^{2}(v_i) - (h_{i-1}\mu^{-}(v_i) + h_{i}\mu^{+}(v_i))}{h_i(h_{i-1} + h_i)}, & \text{if } j = i+1, \\ -q_{i,i-1} - q_{i,i+1}, & \text{if } j = i, \\ 0, & \text{otherwise}, \end{cases}$$

with the notation  $z^{\pm} = \max(\pm z, 0)$ . Further, to guarantee a well-defined probability matrix, the following condition must be satisfied:

$$\max_{1\leq i< m_0} (h_i) \leq \min_{1\leq i\leq m_0} \left( \frac{\sigma^2(v_i)}{|\mu(v_i)|} \right)$$

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

(日) (周) (三) (三) (三) (三) (○)

۲

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三回日 の々で