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Motivation

The Heston model is a widely utilized stochastic volatility (SV)
models in the option pricing literature as well as in practice.

For a fixed time horizon, the characteristic function (ChF) is known in
closed-form.

Then, European option pricing is efficiently accomplished with any
standard Fourier method.

Enabling a fast calibration of the Heston model parameters to match
observed volatility surfaces, as required in practice.

However, after calibration there is still great difficulty in pricing exotic
contracts under the Heston model.

To price contracts such as Asian options and variance swaps, Monte
Carlo (MC) methods are the traditional surrogates in these cases.

Unfortunately, MC suffers from a number of well known deficiencies,
and complicated simulation schemes are often required to overcome
the boundary effects that accompany models such as Heston.

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia CTMC-Heston model July 12, 2019 2 / 30



What we propose

The practical objective of this work is to formalize a model which
reproduces vanilla market quotes, but is at the same time amenable
to complex derivative pricing in a manner that is consistent with the
calibrated model.

We propose a model and framework based on the Heston model. We
call this the CTMC-Heston model, as it uses a finite state Continuous
Time Markov Chain (CTMC) approximation to the variance process.

The new formulation enables a closed-form solution for the ChF of
the underlying (log-)returns, which allows the use of Fourier inversion
techniques to efficiently price exotics.

We provide numerical studies which demonstrate convergence to
Heston’s model as the state space is refined. A detailed theoretical
analysis of the method will follow.

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia CTMC-Heston model July 12, 2019 3 / 30



Outline

1 From Heston model to CTMC-Heston model

2 Calibration of the CTMC-Heston model

3 Application: Pricing Exotic options under CTMC-Heston model

4 Conclusions
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From Heston model to CTMC-Heston model

The Heston stochastic volatility model,

dSt
St

= (r − q)dt +
√
vtdW

1
t ,

dvt = η(θ − vt)dt + σv
√
vtdW

2
t ,

(1)

where dW 1
t and dW 2

t are correlated Brownian motions, i.e.
dW 1

t dW
2
t = ρdt, with ρ ∈ (−1, 1).

The stochastic volatility (or variance), vt , is driven by a CIR process,
having a mean reversion component.

Value v0 is the initial volatility, η controls the mean reversion speed
while θ is the long-term volatility and σv corresponds to the volatility
of the variance process vt , also known as vol-vol
(volatility-of-volatility).

The model parameters are therefore Θ = {v0, η, θ, σv , ρ}.
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The Heston’s model solution can be re-expressed in the form

log
(
St
S0

)
= ρ

σv
(vt − v0) + (r − q)t − 1

2

∫ t
0 vsds

− ρ
σv

∫ t
0 η(θ − vs)ds +

√
1− ρ2

∫ t
0

√
vsdW

∗
s ,

where W 1
t := ρW 2

t +
√

1− ρ2W ∗
t and W ∗

t is independent from W 2
t .

Rearranging, we introduce the auxiliary process (X̃t)t≥0,

X̃t := log
(
St
S0

)
− ρ

σv
(vt − v0)

=
(
r − q − ρηθ

σv

)
t +

(
ρη
σv
− 1

2

) ∫ t
0 vsds +

√
1− ρ2

∫ t
0

√
vsdW

∗
s .

We thus have the following uncoupled two-factor representation,

dX̃t =
[
(ρησv −

1
2 )vt + ω̄

]
dt +

√
(1− ρ2)vtdW

∗
t ,

dvt = µ(vt)dt + σ(vt)dW
2
t ,

where ω̄ := (r − q − ρηθ
σv

), µ(vt) := η(θ − vt) and σ(vt) := σv
√
vt .
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CTMC-Heston model

Given a state-space v := {v1, . . . , vm0}, and a CTMC {α(t), t ≥ 0}
transitioning between the indexes {1, . . . ,m0} according to

Q{α(t + ∆t) = j |α(t) = k} = δjk + qjk∆t + o(∆t).

The set of transition rates qjk form the generator matrix Qm0×m0 ,
chosen so that (vα(t))t≥0 are locally consistent with (vt)t≥0.

Given (vα(t))t≥0, X̃t is approximated by a Regime Switching (RS)
diffusion,

X̃α
t = ω̄t +

∫ t

0

(
ρη

σv
− 1

2

)
vα(s)ds +

√
1− ρ2

∫ t

0

√
vα(s)dW

∗(s)

=

∫ t

0
ζα(s)ds +

∫ t

0
βα(s)dW

∗(s),

where for α(s) ∈ {1, . . . ,m0},

ζα(s) :=

(
r − q − ρηθ

σv

)
+

(
ρη

σv
− 1

2

)
vα(s), βα(s) :=

√
(1− ρ2)vα(s).
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Main advantage: the new formulation enables a closed-form
expression for the conditional ChF. Given ∆t > 0, ∀j = 1, ...,m0,

φ̃j
X̃α

∆t

(ξ) := E[e iξX̃
α
∆t |α(0 ≤ s ≤ ∆t) = j ]

= E [exp (iξ (ζj∆t + βjW
∗(∆t)))] := exp(ψj(ξ)∆t),

where ψj(ξ) = iζjξ − 1
2ξ

2β2
j , j = 1, . . . ,m0. is its Lévy symbol.

The process X̃α
t is completely characterized by the set {ψj(ξ)}m0

j=1,
together with the generator Q.

The ChF of X̃α
∆t , ∆t ≥ 0, conditioned on the initial state α(0) = j0,

E
[
e iX̃

α
∆tξ|α(0) = j0

]
= 1′M(ξ; ∆t)ej0 , j0 ∈ {1, . . . ,m0}

where we define the matrix exponential

M(ξ; ∆t) := exp
(
∆t
(
Q ′ + diag(ψ1(ξ), . . . , ψm0(ξ)

))
,

and 1 ∈ Rm0 represents a column vector of ones, and ej ∈ Rm0 a unit
column vector with a one in position j .
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X̃α
∆t induces the following CTMC-Heston model for the underlying

S∆t , namely

Sα∆t = S0 exp

(
X̃α

∆t +
ρ

σv
(vα(∆t) − vα(0))

)
.

The conditional ChF of the log-increment

Rα∆t := log(Sα∆t/S0) = X̃α
∆t +

ρ

σv
(vα(∆t) − vα(0)),

is recovered in closed-form as

E[e iR
α
∆tξ|α(0) = j , α(∆t) = k] =Mk,j(ξ; ∆t) · exp

(
iξ
ρ

σv
(vk − vj)

)
:= M̃k,j(ξ; ∆t).

which follows from conditional independence.

We can view the CTMC-Heston model as both an approximation to
Heston’s model, as well as a tractable model in its own right.
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Calibration of the CTMC-Heston model

As a Fourier inversion method we employ SWIFT, which has several
important advantages which make it well-suited for calibration:

I Error control. It is probably the most relevant property within an
optimization problem. Thanks to the use of Shannon wavelets, SWIFT
establishes a bound in the error given any scale m of approximation.

I Robustness. SWIFT provides mechanisms to determine all the free
parameters in the approximation made based on the scale m which, as
mentioned in the previous point, determines the committed error.

I Performance efficiency. As other Fourier inversion techniques,
SWIFT is an extremely fast algorithm, allowing FFT, vectorized
operations or even parallel computing features.

I Accuracy. Although an error bound is provided, SWIFT has
demonstrated a very high precision in most situations, far below the
predicted error bound and, at least, comparable with the
state-of-the-art methodologies.

The properties mentioned above ensure high quality estimations in
the calibration process, reducing the chances of any possible
malfunctioning or divergence in the optimization procedure.
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Grid selection

Our goal is to form a model which parsimoniously resembles Heston.
One of the key aspects in designing the CTMC-Heston model is a
specification for the variance state-space (grid).
Several conceptually different approaches available in the literature.
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CTMC: numerical study

Data sets: two representative scenarios.

scenario v0 η θ σv ρ

Set I regular market 0.03 3.0 0.04 0.25 −0.7

Set II stressed market 0.4 3.0 0.4 0.5 −0.1

Convergence in m0.
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Influence of the model parameters
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Figure: Set I: put option, S0 = 100, K = 100, r = 0.05 and T = 1.
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Influence of the model parameters
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Figure: Set II: put option, S0 = 100, K = 100, r = 0.05 and T = 1.
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Calibration with real data (Microsoft, January 2019)
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Figure: Microsoft calibration curves for varying m0. Market parameters: call
options, S0 = 105.36, K = {65, 70, . . . , 150, 155}, r = 0.0246 and T = 0.4986.
Heston parameters:
v0 = 0.0906, η = 0.8549, θ = 0.1379, σv = 0.9976, ρ = −0.6187.
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Calibration with real data (Google, January 2019)
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Figure: Google implied volatility: call options, S0 = 1080.66,
K = {880, 890, . . . , 1390, 1395}, r = 0.0249 and T = 0.9972;
v0 = 0.1482, η = 0.7752, θ = 0.0722, σv = 0.9278, ρ = −0.5444.
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Interesting lessons

All the approaches provide numerical convergence in m0.

The error decays very fast at the beginning, with smaller m0, and
smoothens for bigger m0, suggesting a damping effect.

The grid distribution proposed by Lo and Skindilias provides, in
general, poorer estimations.

Although the uniform approach performs surprisingly well in the test
with synthetic parameters, the real calibration experiment shows a
pretty inaccurate estimations for options far from at-the-money strike.

The schemes by Mijatovic-Pistorius and Tavella-Randall perform
similarly. It is worth noting that the first explodes when the initial and
long-term volatilities differ greatly one from the other. The second
happens to be the most robust and precise choice in general.

By focusing on the correlation parameter, ρ, in the second test, we
observe that the error tends to be minimum close to the no-correlation
point (ρ = 0), and it degrades when ρ ventures far form zero.
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Application: Exotic options under CTMC-Heston model

Once calibrated, a model is commonly employed to price more
involved products (early-exercise, path-dependent, etc.).
Many exotic products can be defined in terms of a generic recursion.
Consider N + 1 monitoring dates, 0 = t0 < t1 < · · · < tN = T . We
define the log returns Rn by

Rn := log

(
Sn
Sn−1

)
, Sn := S(tn), n = 1, ...,N.

The contracts of interest satisfy a very general sequence of equations

Y1 := wN · h(RN) + %N

Yn := wN−(n−1) · h(RN−(n−1)) + g(Yn−1) + %N−(n−1), n = 2, . . . ,N,

where h, g are continuous functions, {wn}Nn=1 is a set of weights, and
{%n}Nn=1 is a set of shift parameters. Includes contracts of the form

G

(
N∑

n=1

wn · h(Rn); Θ

)
.
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Prominent examples of contracts which fall within this framework.
I Realized variance swaps and options:

AN =
1

T

N∑
n=1

(Rn)2 and AN =
1

T

N∑
n=1

(exp(Rn)− 1)2
,

with G (AN) := AN − K (swap), and G (AN) := (AN − K )+ (call).
I Cliquets: with local (global) floor and cap F ,G (Fg ,Gg ),

AN =
N∑

n=1

max (F ,min (C , exp(Rn)− 1)) ,

with G (AN) = K ·min (Cg ,max (Fg ,AN)).
I Arithmetic (weighted) Asian Options:

AN :=
1

N + 1

N∑
n=0

wnSn

=
S0

N + 1

(
w0 + eR1

(
w1 + eR2

(
· · ·eRN−1

(
wN−1 + wNe

RN
))))

,

where G (AN) := (AN − K )+ for a call option.
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Numerical experiments with exotic options

We will present some experiments aiming to numerically validate the
introduced CTMC-Heston model.

We will consider several exotic contracts: realized variance swaps,
realized variance options and Asian options.

The recursive definition above allows efficient Fourier methods
(SWIFT).

The realized variance swaps are chosen for comparative purposes,
since an exact solution for the Heston model is available.

That is not the case for the other two products, which often require
the use of MC methods.

Computer system CPU Intel Core i7-4720HQ 2.6GHz, 16GB RAM
and Matlab R2017b.

Based on the calibration tests, Tavella-Randall scheme is used.

MC setting: QE scheme with 106 paths and 360 time steps.
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Convergence in m0
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(b) ρ = −0.7.

Figure: Variance Swaps: r = 0.05 and T = 1. Heston parameters: Set I (regular
market). Grid Design: Tavella-Randall.
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Convergence in m0
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Figure: Variance Swaps: r = 0.05 and T = 1. Heston parameters: Set II (stressed
market). Grid Design: Tavella-Randall.
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Realized variance swaps (Set I)

ρ = −0.1
N Ref. SWIFT MC RESWIFT REMC

5 0.0371205474 0.0371205820 0.0371242281 9.32× 10−7 9.91× 10−5

12 0.0369570905 0.0369571055 0.0369627242 4.06× 10−7 1.52× 10−4

50 0.0368631686 0.0368630034 0.0368736021 4.48× 10−6 2.83× 10−4

180 0.0368411536 0.0368414484 0.0368357466 8.00× 10−6 1.46× 10−4

360 0.0368368930 0.0368342265 0.0368466261 7.23× 10−5 2.64× 10−4

ρ = −0.7
N Ref. SWIFT MC RESWIFT REMC

5 0.0375737983 0.0375740073 0.0375539243 5.56× 10−6 5.28× 10−4

12 0.0371685246 0.0371687309 0.0371532126 5.55× 10−6 4.11× 10−4

50 0.0369172829 0.0369172021 0.0369199786 2.18× 10−6 7.30× 10−5

180 0.0368564120 0.0368549997 0.0368514021 3.83× 10−5 1.35× 10−4

360 0.0368445443 0.0368489009 0.0368522457 1.18× 10−4 2.09× 10−4

Table: Variance Swaps: m0 = 40, Set I, T = 1 r = 0.05.
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Realized variance swaps (Set II)

ρ = −0.1
N Ref. SWIFT MC RESWIFT REMC

5 0.4067078727 0.4067086532 0.4065423061 1.91× 10−6 4.07× 10−4

12 0.4029056015 0.4029060040 0.4027957415 9.99× 10−7 2.72× 10−4

50 0.4007139003 0.4007139406 0.4008416719 1.00× 10−7 3.18× 10−4

180 0.4001994199 0.4001993773 0.4002238554 1.06× 10−7 6.10× 10−5

360 0.4000998185 0.4000997601 0.4000181976 1.46× 10−7 2.04× 10−4

ρ = −0.7
N Ref. SWIFT MC RESWIFT REMC

5 0.4166286485 0.416631041793736 0.4167251660 5.74× 10−6 2.31× 10−4

12 0.4075137267 0.4075104743 0.4073002992 7.98× 10−6 5.23× 10−4

50 0.4018902561 0.4018867030 0.4019702179 8.84× 10−6 1.98× 10−4

180 0.4005309091 0.4005272887 0.4006611714 9.03× 10−6 3.25× 10−4

360 0.4002660232 0.4002623900 0.4001430561 9.07× 10−6 3.07× 10−4

Table: Variance Swaps: m0 = 40, Set II, T = 1 r = 0.05.
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Realized variance option

ρ = −0.1 ρ = −0.7
K Ref.(MC) SWIFT RE Ref.(MC) SWIFT RE

0.01 0.02567765 0.02568006 9.40× 10−5 0.02587552 0.02586686 3.34× 10−4

0.02 0.01699106 0.01701443 1.37× 10−3 0.01712666 0.01710650 1.17× 10−3

0.03 0.01045427 0.01044283 1.09× 10−3 0.01053466 0.01054260 7.57× 10−4

0.04 0.00613621 0.00613145 7.75× 10−4 0.00631007 0.00633681 4.23× 10−3

0.05 0.00351388 0.00352261 2.48× 10−3 0.00380057 0.00380673 1.62× 10−3

Table: Variance Call Options: m0 = 40, T = 1, r = 0.05, N = 12. Heston Set I.

ρ = −0.1 ρ = −0.7
K Ref.(MC) SWIFT RE Ref.(MC) SWIFT RE
0.1 0.28810430 0.28826035 5.41× 10−4 0.29269761 0.29262732 2.40× 10−4

0.2 0.19753250 0.19753794 2.75× 10−5 0.20203744 0.20184267 9.64× 10−4

0.3 0.12269943 0.12276166 5.07× 10−4 0.12730330 0.12737500 5.63× 10−4

0.4 0.07050097 0.07054838 6.72× 10−4 0.07568155 0.07567259 1.18× 10−4

0.5 0.03826162 0.03836334 2.65× 10−3 0.04341057 0.04352151 2.55× 10−3

Table: Variance Call Options: m0 = 40, T = 1, r = 0.05, N = 12. Heston Set II.
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Arithmetic Asian option (Set I)

N = 12
K(%ofS0) Ref.(MC) SWIFT RE

80% 21.5285835237 21.5270366207 7.18× 10−5

90% 12.5823808044 12.5896547750 5.78× 10−4

100% 5.4002621022 5.4000546644 3.84× 10−5

110% 1.3880527793 1.3906598970 1.87× 10−3

120% 0.1736330491 0.1731034094 3.05× 10−3

N = 50
K(%ofS0) Ref.(MC) SWIFT RE

80% 21.5386392371 21.5339280578 2.18× 10−4

90% 12.6239658563 12.6182127196 4.55× 10−4

100% 5.4504220302 5.4499634141 8.41× 10−5

110% 1.4295579101 1.4275471949 1.40× 10−3

120% 0.1824925012 0.1831473714 3.58× 10−3

N = 250
K(%ofS0) Ref.(MC) SWIFT RE

80% 21.5266346261 21.5359313401 4.31× 10−4

90% 12.6269859960 12.6261325064 6.75× 10−5

100% 5.4534882341 5.4636939471 1.87× 10−3

110% 1.4440819439 1.4378101025 4.34× 10−3

120% 0.1875776074 0.1860298190 8.25× 10−3

Table: Tavella-Randall, m0 = 40, Set I, call, option, S0 = 100, T = 1, r = 0.05.
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Arithmetic Asian option (Set II)

N = 12
K(%ofS0) Ref.(MC) SWIFT RE

80% 25.5585678735 25.5988860602 1.57× 10−3

90% 19.6670725943 19.6278689575 1.99× 10−3

100% 14.8962382700 14.8552716759 2.75× 10−3

110% 11.1517895745 11.1463503256 4.87× 10−4

120% 8.3165299338 8.3212712111 5.70× 10−4

N = 50
K(%ofS0) Ref.(MC) SWIFT RE

80% 25.7824036750 25.7778794489 1.75× 10−4

90% 19.8263899575 19.8272466858 4.32× 10−5

100% 15.0530165896 15.0529723969 2.93× 10−6

110% 11.3291439277 11.3270969069 1.80× 10−4

120% 8.4614191560 8.4772028373 1.86× 10−3

N = 250
K(%ofS0) Ref.(MC) SWIFT RE

80% 25.8641465886 25.8255340288 1.49× 10−3

90% 19.9219203435 19.8806560654 2.07× 10−3

100% 15.1245760541 15.1064333350 1.19× 10−3

110% 11.3793305624 11.3765266399 2.46× 10−4

120% 8.5254366308 8.5203790223 5.93× 10−4

Table: Tavella-Randall, m0 = 40, Set II, call, option, S0 = 100, T = 1, r = 0.05.
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Conclusions

This work provides a general, computationally efficient, and robust
valuation framework under the CTMC-Heston model.

This model approximation provides a parsimonious and faithful
representation of the Heston model, and it is able to reproduce the
same volatility smile structure with a modest number of states.

We can efficiently price a large variety of contracts which are
exceptionally difficult to handle under Heston’s model.

The efficiency of the method is obtained by combining the CTMC
approximation of the variance, with the SWIFT Fourier method.

An extensive set of numerical experiments were provided, analyzing
Asian options and discretely sampled realized variance derivatives.

A detailed error analysis will follow (work in progress).

Á. Leitao & J.L. Kirkby & L. Ortiz-Gracia CTMC-Heston model July 12, 2019 28 / 30



References

Zhenyu Cui, Justin L. Kirkby, and Duy Nguyen.
Springer IMA volume: Recent Developments in Financial and Economic Applications,
chapter Continuous-Time Markov Chain and Regime Switching approximations with
applications to options pricing.
Forthcoming, Springer, 2019.
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Given a grid of points v = {v1, v2, . . . , vm0} with grid spacings
hi = vi+1 − vi , and assuming that vα(t) takes values on v, the
elements qij of the generator Q for the CTMC approximation of the
process vt read

qij =



µ−(vi )

hi−1
+
σ2(vi )− (hi−1µ

−(vi ) + hiµ
+(vi ))

hi−1 (hi−1 + hi )
, if j = i − 1,

µ+(vi )

hi
+
σ2(vi )− (hi−1µ

−(vi ) + hiµ
+(vi ))

hi (hi−1 + hi )
, if j = i + 1,

− qi ,i−1 − qi ,i+1, if j = i ,

0, otherwise,

with the notation z± = max(±z , 0). Further, to guarantee a
well-defined probability matrix, the following condition must be
satisfied:

max
1≤i<m0

(hi ) ≤ min
1≤i≤m0

(
σ2(vi )

|µ(vi )|

)
.
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