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The BENCHOP project

@ The purpose and aim of BENCHOP is to provide sets of benchmark
problems in option pricing.
o Facilitating comparison and evaluation of different methods.

@ Expecting that future papers in the financial field will compare
method performances with the methods in BENCHOP.

o Contributing to a more uniform comparison and understanding of
different methods’ pros and cons.

@ Results published in a journal articles.

@ This is the second edition. The results of the first edition have been
already published®.

'Lina von Sydow et al. "BENCHOP — The BENCHmarking project in option pricing’.
In: International Journal of Computer Mathematics 92.12 {201%), pp.=2361=237%
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Aspects 2nd edition

@ Implementation should be in Matlab.

o Preferable, use of high-performance features: parallel computing
toolbox.

@ Two categories:

» Basket options.
» Stochastic and local volatility models.

e Benchmark: Error (accuracy) in the solution as a function of CPU
time.
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Basket options - Problem formulation

@ Underlying prices modelled by a multidimensional Merton model:

ds/(t) _ J,‘(t)
Sey =~ Awidde +dBi(1) + (e - 1) aP(t).
e dBj(t), i=1,...,dis a multidimensional Brownian motion with

covariance matrix Z? =aB(S;, t)O'jB(Sj, t)p,‘?.
e P(t) is a Poisson process with the arrival rate \.

e Ji(t), i=1,...,d follows a multivariate normal distribution with
mean values 7/ and covariance matrix Z,-Jj =oi(S;, t)JJ-J(Sj, t)p,-Jj.

@ The expected jump of the ith component is
19
ki =E [eJ"(t) — 1} = exp M,-J + 5 ZO‘,-JO'J-J/);JJ- -1
j=1

@ When X\ = 0 and o} constant: multi Black-Scholes model.
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Basket options - Problems

@ For all the problems: Price u.

@ For some problems also: A = gg and V = ao

© European spread option
g(S) =max{S; — S, — K,0},

with settings: GBM, S; =100, r =0.03, T=1, p=0.5and K =5.
Two problems: constant volatility (o; = 0.15) or given by the function
(S;/100 — 1.2)2

(5;/100)% + 1.44°

oi(Si, t) = 0.15+ 0.15(0.5 + 2t)
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Basket options - Problems

@ American put on the minimum of two assets
g(S) = max{K — min {51, 5,},0},

with settings: S; =40, r =0.05, 6; =03 T =0.5, p =0.5 and
K = 40. Two problems: without jumps (Black-Scholes) or with
jumps (uf = —0.5, 0/ = 0.4, p,-Jj =0.5and A =0.4).

© Arithmetic basket options on 3 and 10 assets

19
g(S):max{K—dZS,-,O},

i=1

with settings: GBM, S; =40, r =0.06, 0; = 0.2, T =1 and K = 40.
Four problems: European/American and low constant correlation

(p = 0.25), European/American high variable correlations

(pj = 0.9,
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Basket options - Problems

@ European arithmetic basket options on four assets

1 d
g(S)—max{K—dZS;,O},

i=1
with settings: GBM, S; =40, r =0.06, 0; = 0.3, T =1 and K = 40.

Correlation matrix:

1 03 04 05
[03 1 02 025
P= 104 02 1 03

05 025 03 1
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Basket options - Problems

© European/American arithmetic basket options on five assets

g(S5) = max {

d
K — Zw,-s,-,o},

i=1

with settings: GBM, S; =1, r = 0.05,
o = [0.518,0.648,0.623,0.570, 0.530],
w = [0.381,0.065,0.057,0.270,0.227], T =1 and K = 1. Correlation

matrix:
1 0.79

079 1
p=|082 073
0.91 0.80
0.84 0.76
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Stochastic and local volatility - Problems

@ European call options.
@ Three prices: in-the-money, at-the-money and out-the-money.

@ SABR model
The formal definition of the SABR model reads
dS(t) = o(t)SP(t)dWs(t), S5(0) = Spexp(rT),
do(t) = ao(t)dW,(t), o(0) = oy,

where S(t) = S(t)exp (r(T — t)). Correlation between the Brownian
motions, p. Two parameter sets:

T=2r=0.0 5=05 00=05 a=04, =05, p=0.

T =10, r=0.0, S =0.07, 0p = 0.4, « = 0.8, 3 = 0.5, p = —0.6.
European call option payoff (max(S(T) — Ki(T),0)) with

Ki(T) = S(0)exp(0.1 x V'T x &),
§; = —1.0,0.0,1.0.
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Stochastic and local volatility - Problems

@ Quadratic local stochastic volatility model

ds(t) = rS( t)dt+ VV()(S dW5 )
dV(t)=k(n—V dt+0\/ t)dWy (t
with f(s) = 2as? 4+ Bs +~. Two models:
Heston(a = 0,5 =1,v = 0) and QLSV(« = 0.02, 5 =0,y = 0).
© Heston-Hull-White model

dS(t) = R(t)S(t)dt + /V(t)S(t dWS

dV(t) = k(n— V(t) dt+01\/ dWV
dR(t) = a(b— V(t))dt+02dWR(t).
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Our contribution

@ We propose Monte Carlo-based methods.
o For Basket options:

» Stochastic Grid Bundling method (SGBM)?2.
@ For SABR model:

» The mSABR simulation scheme3.
» Multi-Level Monte Carlo (MLMC) SABR (BONUS).

2Shashi Jain and Cornelis W. Qosterlee. “The Stochastic Grid Bundling Method:
Efficient pricing of Bermudan options and their Greeks". In: Applied Mathematics and
Computation 269 (2015), pp. 412—-431.
3Alvaro Leitao, Lech A. Grzelak, and Cornelis W. Qosterlee. “On an efficient
multiple time step Monte Carlo simulation of the SABR model”. In: Quantitative
Finance 17.10 (2017), pp. 1549-1565.
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Stochastic Grid Bundling Method

Early-exercise option pricing method, particularly Bermudan.
Dynamic programming approach.

Simulation and regression-based method.

Forward in time: Monte Carlo simulation.

Backward in time: Early-exercise policy computation.

Step I: Generation of stochastic grid points

{S¢(n),...,Se, (M)}, n=1,..., N.

Step II: Option value at terminal time tyy = T

V4,,(St,,) = max(h(S¢,), 0).
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Stochastic Grid Bundling Method

@ Backward in time, t,,, m < M,:

@ Step Ill: Bundling into v non-overlapping sets or partitions

Btm—1(1)7 s 7Btm—1(V)

@ Step IV: Parameterizing the option values

Z(Stm7 afm) ~ Vtm(stm)'

@ Step V: Computing the continuation and option values at t;,_1

Qty1(Styr (1) = E[Z(St,,. o, )|Se,_, (n)]-

The option value is then given by:

Vi1 (St (n)) = max(h(St, (1), Qey1 (St (m)).
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Stochastic Grid Bundling Method

@ Given basis functions ¢1, ¢, ..., ¢k.

In our case, Z <Stm,at ) depends on S;, only through ¢«(Ss,):

(Stm,atm) Zatm )k (Sty)-

Computation of a’fm (or @ at ) by least squares regression.

The afm determines the early-exercise policy.
@ The continuation value:

K
Qt,_1(St,,(n)) = Dy, ,E KZ a?m(km(stm)) |stm_1]
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Stochastic Grid Bundling Method

@ Choosing ¢y: the expectations I [¢x(Ss,,)|S¢,_,]| should be easy to
calculate.

@ The intrinsic value of the option, h(-), is usually an important and
useful basis function.

@ For S; following a GBM, some expectations analytically available:

» Geometric average payoff.
» Arithmetic average payoff.
» Min/Max payoff.

» Spread payoff.

@ For European options, the intermediate steps produce a variance
reduction in the solution.

@ For American options, Richardson interpolation stage is required.
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Stochastic Grid Bundling Method

@ SGBM has been developed as duality-based method.
@ Provide two estimators (confidence interval).
e Direct estimator (high-biased estimation):

Vi +(St+(n)) = max (h (Stos (M) s ey (St s(m))
IE[Vi“o sto = Z Vto sto

@ Path estimator (low-biased estimation):

7*(S(n)) = min{ty, : h(S¢,(n)) > Q\tm (S¢,,(n)), m=1,..., M},
v(n) = h (S(s(n))) -
1 &

Vi (Sty) = lim - > v(n).

N N, 1
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Stochastic Grid Bundling Method

@ The bundling stage allows local regression.
@ Bundling techniques:

» K-means clustering.

» Recursive bifurcation.

» Recursive bifurcation in a reduced space.

» Equal partitioning (suitable for parallel versions).
@ Important for the accuracy in the regression:

» Quality of the paths within a bundle.
» Amount of paths in a bundle.

Alvaro Leitao (CWI & TUDelft) The BENCHOP project Leiden, September 22, 2017 18 / 37



Stochastic Grid Bundling Method

Vi ()

—=-5d Direct estimator
-e-5d Path estimator

—0—10d Direct estimato
——10d Path estimator

—+—15d Path estimator

—4-15d Direct estimator

r

Figure: SGBM on arithmetic basket option - Convergence in bundles.
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BENCHOP results - SGBM

@ European options.

|10t 100% 1073

BSeuCallspreadU 0.12 0.40 18.53
BSeuCallspreadDelta 0.10 0.42 18.48
BSeuCallspreadVega 0.22 175 81.41
BSeuCalispreadVega (parfor) | 0.17 0.63 26.57
BSeuPut3DbasketLCCU 0.08 0.08 0.81
BSeuPut10DbasketLCCU 0.10 0.09 0.95
BSeuPut3DbasketHVCU 0.08 0.10 0.79
BSeuPutl10DbasketHVCU 0.09 0.10 181
BSeuPut4DbasketU 0.08 0.10 171
BSeuPut5DbasketU 0.09 0.09 0.15
BSeuPutbDbasketDelta 0.09 0.09 0.17
BSeuPut5DbasketVega 0.37 042 091

Table: SGBM times(s).
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BENCHOP results - SGBM

@ Influence of parfor.
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Figure: Speedup
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BENCHOP results

@ American options (no reference value).

| Value (e =1073) Serial Parallel

BSamPutminU 4.3511 110.29 38.11
BSamPutminDelta —0.2753 111.86  38.34
BSamPutminVega 7.889 221.15 7494
BSamPut3DbasketLCCU 1.4695 3.33 1.35
BSamPut10DbasketLCCU 1.0828 4.27 1.94
BSamPut3DbasketHVCU 2.1878 3.10 1.30
BSamPut10DbasketHVCU 1.8873 8.86 4.30
Table: SGBM.

Alvaro Leitao (CWI & TUDelft) The BENCHOP project Leiden, September 22, 2017 22 /37



Efficient simulation of SABR model

e Simulation of the volatility process, o(t)|o(s):
~ 1 5
o(t) ~o(s)exp | aW,(t) — 5 (t—ys)],

where W, (t) is a independent Brownian motion.
e Simulation of the integrated variance process, fst 0?(z)dz|o(t), o(s).

o Simulation of the forward process, S(t)|S(s), [I 02(z)dz, o(t), a(s).

S
@ The conditional integrated variance is a challenging part. We
propose:
» Approximate the conditional distribution by using Fourier techniques
and copulas.
» Marginal distribution based on COS method.
» Conditional distribution based on copulas.
» Improvements in performance and efficiency (SCMC).
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Distribution of the integrated variance

e For notational convenience, we will use Y(s,t) := fst 0?(z)dz.

@ Discrete equivalent, M monitoring dates:

t M .
Y(s, ) ::/S 2(2)dz~ Y Ato?(5) = V(s,1)

Jj=1

where tj = s+ jAt, j=1,...,M and At = 2.
@ In the logarithmic domain, where we aim to find an approximation of
Flog Y|log U(S):

X

F|0g \A/| log o'(s) (X) = /_ ﬁog )A/‘ log g—(s) (y)d}/7

o

where f, ) is the probability density function (PDF) of

o log Y|logo(s
log Y (s, t)|log o(s).
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PDF of the integrated variance

Equivalent: Characteristic function and inversion (Fourier pair).
Recursive procedure to derive an approximated qblog Vlog o(s)"

By defining the logarithmic increment of o2(t):
2
o*(t)) )
R =lo J>, =1,...,M.
SR (0’2(9'—1) /
And introducing the iterative process
Yl = RM)
)/J':RI\/H*lfj—i_Zj—l? J:277M

with Z; = log(1 + exp(Y})).
The quantity SA/(S, t) can be expressed:

M
Y(s,t) =) o*(t;)At = Ato>(s) exp(Yum).
i=1
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CDF of the integrated variance

® And, we compute ¢, . \”/||oga(s)(“)' as follows:

Drog ¥ |0ga(s)(u) = exp (iu Iog(Ata2(s))) by, (u).

@ By applying COS method in the support ER B]:

km
(-057).
km . akm
Ck =R <¢Iog \A/\Iogo(s) (B _ §) exp <_IB_ §)> .

e The CDF of log Y (s, t)| log o(s):

flog Y |logo(s) (X

with

Flog \7| log o(s) (X) = /_ f|°g V\ log o(s) (y)dy

X km
~ —a dy.
a b <(y )b a> 4
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Copula-based simulation of [ 02(z)dz|o(t), o(s)

@ In order to apply copulas, we need (logarithmic domain):

> log Y| log o(s)"

log o(t)| log o(s)"
» Correlation between log Y (s, t) and log o(t).

>

@ The distribution of logo(t)|logo(s) is known (o(t) follows a
log-normal distribution).

@ Approximated Pearson’s correlation coefficient:
t2 — 52

2\/(%#‘ + 2ts3 — 1252)

Plog Y logo(t) &~

@ For some copulas, like Archimedean, Kendall's 7 is required:
P =sin (gr) .
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Sampling [ 0%(z)dz|o(t), o(s)

@ It forms the basis of the mSABR method.

@ Steps:
O Determine Fk’g o(t)|loga(s and Flog Y|logo(s):

@ Determine the correlatlon between log Y(s, t) and log o(t).

© Generate correlated uniform samples, Ulog o(1)|10go(s) and U
by means of copula.

@ From Uloga(t)||og0(s) and U,
distributions.

© The samples of o(t)|o(s) and Y(s,t) = f: 02(z)dz|o(t),o(s) are
obtained by taking exponentials.

og Y| log o(s)

log V| log o(s) Invert original marginal
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Simulation of S(t)|S(s), [ 0?(2)dz, o(t), o(s)

@ In the original paper, we use numerical inversion of the asset CDF.

@ For the BENCHOP project, we consider an alternative scheme that
allows the use of the mSABR basis.

e Discretization scheme Log-Euler+ (time step At):

1 t+At
08 S(t + At) = log S(t) — 5527 (1) / 2(2)dz
+ sﬁ-l(t)g (o(t + At) — o(t))
t+At

+ ST (e) /1 2 / o(2)dWs(2),

where [} 4% 0(2)dWs(z2) ~ N (0, [T 0%(2)dz).
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BONUS - MLMC SABR

@ Well establish method introduced by Mike Giles in 2008.

@ Suppose a generic multi-dimensional SDE
dS(t) = a(S, t)dt + b(S, t)dW(t).
@ A simple Euler discretization
Spi1 = S+ a(Sn, tn)h + b(Sp, tn) AW,

e If you want to estimate E[f(S7)], the simplest estimator

T/h

IIMZ
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BONUS - MLMC SABR

@ Consider Monte Carlo path simulations with different time step size
T
h/—m, I=1,2,...,L

For a given Brownian path W(t), let P denote the payoff f(S(T)).
And let P; denote the approximation to P using the numerical
discretisation with time step h;.

@ Then, it is true that

L
E[P] =E[Po] + > E[P — Pi_1].
=1
@ The simplest estimator of E[ﬁ, — IS,,l] is
1 Y
fi= > (B - Py
I N, ; | -1
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BONUS - MLMC SABR

@ A key point here is that the quantity IS,’ — I-C’,’;l comes from two
discrete approximations with different time steps but the same
Brownian path.

@ It can be seen as a very coarse estimation + different levels of
corrections.

@ It is shown in the paper* that this reduces the variance and the
computational complexity of the final estimator.

*Michael B. Giles. “Multi-level Monte Carlo path simulation”. In: Operations
Research 56.3 (2008), pp. 607-617.
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Convergence of the MLMC - SABR model

@ As usual for MLMC methods, we test the convergence of the
correction estimators.

1072 1072

10 107

104 U 104 4-U,;
-=-U, U,
©-U,; ©-U,

10 s . 10 s 5

107 10° 107 10° 10 107
(a) Set | - Mean corrections. (b) Set I - Var. corrections.

Figure: Convergence of the MLMC implementation for the SABR model.
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Convergence of the MLMC - SABR model

@ Similar results for Set Il.

10 102
107 10

10 U, 10 -4-U;

-=-U, U,

. oYy . ©Y,
10° 10"

103 102 103 102
(a) Set Il - Mean corrections. (b) Set Il - Var. corrections.

Figure: Convergence of the MLMC implementation for the SABR model.
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BENCHOP results - SABR

@ Time vs. accuracy.

|10t 102 10°°
SABReuCalll_LmSABR | 0.48 0.66 10.46
SABReuCalll_MLMC | 0.01 0.07 25.64
SABReuCallll_mSABR | 0.36 0.55 10.45
SABReuCallll_MLMC | 0.01 0.07 25.55

Table: The mSABR and MLMC methods
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Ongoing work

@ Implementation of the remaining basket problems.
@ Improve the bundling when two assets.

@ Parallel version of SABR.

e MLMC + mSABR (if possible).

°

Address the other stochastic local volatility models.
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Suggestions, comments & questions

&

E-mail: aleitao85@gmail.com
Webpage: alvaroleitao.github.io

Thank you for your attention
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