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The BENCHOP project

The purpose and aim of BENCHOP is to provide sets of benchmark
problems.

Facilitating comparison and evaluation of different methods.

Expecting that future papers in the financial field will compare
method performances with the methods in BENCHOP.

Contributing to a more uniform comparison and understanding of
different methods’ pros and cons.

Results published in a journal articles.

This is the second edition. The results of the first edition can be
found in [vSHL+15].
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Aspects 2nd edition

Implementation should be in Matlab.

Preferable, use of high-performance features: parallel computing
toolbox.

I parfor.
I GPU array.

Two categories:
I Basket options.
I Stochastic and local volatility.

Benchmark: Error (accuracy) in the solution as a function of CPU
(GPU) time.
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Basket options - Problem formulation

Underlying prices modelled by a multidimensional Merton model:

dSi (t)

Si (t)
= (r − λκi )dt + dBi (t) +

(
eJi (t) − 1

)
dP(t).

dBi (t), i = 1, . . . , d is a multidimensional Brownian motion with
covariance matrix ΣB

ij = σBi (Si , t)σBj (Sj , t)ρBij .

P(t) is a Poisson process with the arrival rate λ.

Ji (t), i = 1, . . . , d follows a multivariate normal distribution with
mean values µJi and covariance matrix ΣJ

ij = σJi (Si , t)σJj (Sj , t)ρJij .

The expected jump of the ith component is

κi = E
[
eJi (t) − 1

]
= exp

µJi +
1

2

d∑
j=1

σJi σ
J
j ρ

J
ij

− 1.

When λ = 0 and σi constant: multi Black-Scholes model.
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Basket options - Problems

For all the problems: Price u.

For some problems also: ∆ = ∂u
∂Si

and V = ∂u
∂σi

1 European spread option

g(S) = max {S1 − S2 − K , 0} ,

with settings: GBM, Si = 100, r = 0.03, T = 1, ρ = 0.5 and K = 5.
Two problems: constant volatility (σi = 0.15) or given by the function

σi (Si , t) = 0.15 + 0.15(0.5 + 2t)
(Si/100− 1.2)2

(Si/100)2 + 1.44
.
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Basket options - Problems

2 American put on the minimum of two assets

g(S) = max {K −min {S1,S2} , 0} ,

with settings: Si = 40, r = 0.05, σi = 0.3 T = 0.5, ρ = 0.5 and
K = 40. Two problems: without jumps (Black-Scholes) or with
jumps (µJi = −0.5, σJi = 0.4, ρJij = 0.5 and λ = 0.4).

3 Arithmetic basket options on 3 and 10 assets

g(S) = max

{
K − 1

d

d∑
i=1

Si , 0

}
,

with settings: GBM, Si = 40, r = 0.06, σi = 0.2, T = 1 and K = 40.
Four problems: European/American and low constant correlation
(ρ = 0.25), European/American high variable correlations
(ρij = 0.9|i−j |).
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Basket options - Problems

4 European arithmetic basket options on four assets

g(S) = max

{
K − 1

d

d∑
i=1

Si , 0

}
,

with settings: GBM, Si = 40, r = 0.06, σi = 0.3, T = 1 and K = 40.
Correlation matrix:

ρ =


1 0.3 0.4 0.5

0.3 1 0.2 0.25
0.4 0.2 1 0.3
0.5 0.25 0.3 1

 .
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Basket options - Problems

5 European/American arithmetic basket options on five assets

g(S) = max

{
K −

d∑
i=1

wiSi , 0

}
,

with settings: GBM, Si = 1, r = 0.05,
σ = [0.518, 0.648, 0.623, 0.570, 0.530],
w = [0.381, 0.065, 0.057, 0.270, 0.227], T = 1 and K = 1. Correlation
matrix:

ρ =


1 0.79 0.82 0.91 0.84

0.79 1 0.73 0.80 0.76
0.82 0.73 1 0.77 0.72
0.91 0.80 0.77 1 0.90
0.84 0.76 0.72 0.90 1

 .
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Stochastic and local volatility - Problems

European call options.

Three prices: in-the-money, at-the-money and out-the-money.

1 SABR model
The formal definition of the SABR model reads

dS(t) = σ(t)Sβ(t)dWS(t), S(0) = S0 exp (rT ) ,

dσ(t) = ασ(t)dWσ(t), σ(0) = σ0,

where S(t) = S̄(t) exp (r(T − t)). Correlation between the Brownian
motions, ρ. Two parameter sets:
T = 2, r = 0.0, S0 = 0.5, σ0 = 0.5, α = 0.4, β = 0.5, ρ = 0.
T = 10, r = 0.0, S0 = 0.07, σ0 = 0.4, α = 0.8, β = 0.5, ρ = −0.6.
European call option payoff (max(S(T )− Ki (T ), 0)) with

Ki (T ) = S(0) exp(0.1×
√
T × δi ),

δi = −1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5.
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Stochastic and local volatility - Problems

2 Quadratic local stochastic volatility model

dS(t) = rS(t)dt +
√

V (t)f (S(t))dWS(t),

dV (t) = κ(η − V (t))dt + σ
√
V (t)dWV (t),

with f (s) = 1
2αs

2 + βs + γ.

3 Heston-Hull-White model

dS(t) = R(t)S(t)dt +
√

V (t)S(t)dWS(t),

dV (t) = κ(η − V (t))dt + σ1

√
V (t)dWV (t),

dR(t) = a(b − V (t))dt + σ2dWR(t).
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Our contribution

We propose Monte Carlo-based methods.

For Basket options: Stochastic Grid Bundling method (SGBM).

For SABR model:
I The mSABR simulation scheme [LGO17].
I Multi Level Monte Carlo, MLMC, to exploit parallel features.
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Stochastic Grid Bundling Method

Early-exercise pricing method [JO15].

Dynamic programming approach.

Simulation and regression-based method.

Forward in time: Monte Carlo simulation.

Backward in time: Early-exercise policy computation.

Step I: Generation of stochastic grid points

{St0(n), . . . ,StM (n)}, n = 1, . . . ,N.

Step II: Option value at terminal time tM = T

VtM (StM ) = max(h(StM ), 0).
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Stochastic Grid Bundling Method

Backward in time, tm, m ≤ M,:

Step III: Bundling into ν non-overlapping sets or partitions

Btm−1(1), . . . ,Btm−1(ν)

Step IV: Parameterizing the option values

Z (Stm , α
β
tm) ≈ Vtm(Stm).

Step V: Computing the continuation and option values at tm−1

Q̂tm−1(Stm−1(n)) = E[Z (Stm , α
β
tm)|Stm−1(n)].

The option value is then given by:

V̂tm−1(Stm−1(n)) = max(h(Stm−1(n)), Q̂tm−1(Stm−1(n))).
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Stochastic Grid Bundling Method

Basis functions φ1, φ2, . . . , φK .

In our case, Z
(

Stm , α
β
tm

)
depends on Stm only through φk(Stm):

Z
(

Stm , α
β
tm

)
=

K∑
k=1

αβtm(k)φk(Stm).

Computation of αβtm (or α̂βtm) by least squares regression.

The αβtm determines the early-exercise policy.

The continuation value:

Q̂tm−1(Stm−1(n)) = Dtm−1E

[(
K∑

k=1

α̂βtm(k)φk(Stm)

)
|Stm−1

]

= Dtm−1

K∑
k=1

α̂βtm(k)E
[
φk(Stm)|Stm−1

]
.
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Stochastic Grid Bundling Method

Choosing φk : the expectations E
[
φk(Stm)|Stm−1

]
should be easy to

calculate.

The intrinsic value of the option, h(·), is usually an important and
useful basis function. For example:

I Geometric basket Bermudan:

h(St) =

(
d∏

δ=1

Sδ
t

) 1
d

I Arithmetic basket Bermudan:

h(St) =
1

d

d∑
δ=1

Sδ
tm

For St following a GBM: expectations analytically available.
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Stochastic Grid Bundling Method

SGBM has been developed as duality-based method.

Provide two estimators (confidence interval).

Direct estimator (high-biased estimation):

V̂tm−1(Stm−1(n)) = max
(
h
(
Stm−1(n)

)
, Q̂tm−1

(
Stm−1(n)

))
,

E[V̂t0(St0)] =
1

N

N∑
n=1

V̂t0(St0(n)).

Path estimator (low-biased estimation):

τ̂∗ (S(n)) = min{tm : h (Stm(n)) ≥ Q̂tm (Stm(n)) , m = 1, . . . ,M},
v(n) = h

(
Sτ̂∗(S(n))

)
,

V t0
(St0) = lim

NL

1

NL

NL∑
n=1

v(n).
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Simulation of SABR model

Simulation of the volatility process, σ(t)|σ(s):

σ(t) ∼ σ(s) exp

(
αŴσ(t)− 1

2
α2(t − s)

)
,

where Ŵσ(t) is a independent Brownian motion.

Simulation of the integrated variance process,
∫ t
s σ

2(z)dz |σ(t), σ(s).

Simulation of the forward process, S(t)|S(s),
∫ t
s σ

2(z)dz , σ(t), σ(s).

The conditional integrated variance is a challenging part. We
propose:

I Approximate the conditional distribution by using Fourier techniques
and copulas.

I Marginal distribution based on COS method.
I Conditional distribution based on copulas.
I Improvements in performance and efficiency (SCMC).
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Sampling
∫ t

s σ
2(z)dz |σ(t), σ(s)

It forms the basis of the mSABR method.

Steps:
1 Determine Flog σ(t)| log σ(s) and Flog Ŷ | log σ(s).
2 Determine the correlation between logY (s, t) and log σ(t).
3 Generate correlated uniform samples, Ulog σ(t)| log σ(s) and Ulog Ŷ | log σ(s)

by means of copula.
4 From Ulog σ(t)| log σ(s) and Ulog Ŷ | log σ(s) invert original marginal

distributions.
5 The samples of σ(t)|σ(s) and Y (s, t) =

∫ t

s
σ2(z)dz |σ(t), σ(s) are

obtained by taking exponentials.
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Simulation of S(t)|S(s),
∫ t

s σ
2(z)dz , σ(t), σ(s)

In the original paper, we use numerical inversion of the asset CDF.

For the BENCHOP project, we consider an alternative scheme to take
advantage of the parallel features.

But we desire to take advantage of mSABR.

Discretization scheme Log-Euler+ (time step ∆t):

log S(t + ∆t) = log S(t)− 1

2
S2(β−1)(t)

∫ t+∆t

t
σ2(z)dz

+ Sβ−1(t)
ρ

α
(σ(t + ∆t)− σ(t))

+ Sβ−1(t)
√

1− ρ2

∫ t+∆t

t
σ(z)dWS(z),

where
∫ t+∆t
t σ(z)dWS(z) ∼ N

(
0,
∫ t+∆t
t σ2(z)dz

)
.
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Numerical results

Computational time vs. prescribed accuracy.

Relative error (RE).

For SGBM: only sequential times.

For mSABR and MLMC: sequential times and parallel (parfor + GPU
array) times.

Computer system: Intel Core i7-4720HQ 2.6 GHz, RAM 16 Gb.
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Basket options

Reference values only for Problem 5 and European options.

Targeted precision: < 10−3.

Price u

3D European low corr. 28.4988

3D European high corr. 28.6025

10D European low corr. 68.7701

10D European high corr. 66.2690

Table: SGBM times(s).
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Convergence of the MLMC - SABR model

As usual for MLMC, we test the convergence of the correction
estimators.
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(a) Set I - Mean corrections.
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(b) Set I - Var. corrections.

Figure: Convergence of the MLMC implementation for the SABR model.
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Convergence of the MLMC - SABR model

Similar results for Set II.
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(a) Set II - Mean corrections.
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(b) Set II - Var. corrections.

Figure: Convergence of the MLMC implementation for the SABR model.
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SABR model

Computational time in seconds for the considered approaches.

Targeted precision: < 10−3.

Serial Parallel
mSABR MLMC mSABR MLMC

Set I 11.833 1.737 9.805 1.296

Set II 10.378 27.216 9.628 16.847

Table: Time (s).
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Ongoing work

Implementation of the remaining basket problems.

Parallel version of SGBM.

Improved parallel version of mSABR.

MLMC + mSABR (if possible).

Other stochastic local volatility models?
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Suggestions, comments & questions

Thank you for your attention
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