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Á. Leitao & L. Ortiz-Gracia & E. Wagner Asian SWIFT method December 19, 2018 1 / 45



Motivation

Arithmetic Asian options are still attractive in financial markets, but it
numerical treatment is rather challenging.

The valuation methods relying on Fourier inversion are highly
appreciated, particularly for calibration purposes, since they are
extremely fast, very accurate and easy to implement.

Lack of robustness in the existing methods (number of terms in the
expansion, numerical quadratures, truncation, etc.).

The use of wavelets for other option problems (Europeans,
early-exercise, etc.) has resulted in significant improvements in this
sense.

In the context of arithmetic Asian options, SWIFT provides extra
benefits.
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Definitions

Option

A contract that offers the buyer the right, but not the obligation, to buy
(call) or sell (put) a financial asset at an agreed-upon price (the strike
price) during a certain period of time or on a specific date (exercise date).
Investopedia.

Option price

The fair value to enter in the option contract. In other (mathematical)
words, the (discounted) expected value of the contract.

v(S , t) = D(t)E [P(S(t))]

where P is the payoff function, S the underlying asset, t the exercise time
and D(t) the discount factor.
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Definitions (II)

Pricing techniques

Stochastic process, S(t), governed by a SDE.

Underlying models: Black-Scholes, Lévy-based, Heston, etc.

Simulation: Monte Carlo method.

PDEs: Feynman-Kac theorem.

Fourier inversion techniques: characteristic function.

Types of options - payoff function

Vanilla: involves only the value of S at exercise. Standardized.

Exotic: involves more complicated features. Over the counter.

Path-dependent: Asian, Barrier, Lookback, . . .
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Problem formulation

In Asian derivatives, the option payoff function relies on some average
of the underlying values at a prescribed monitoring dates.

Thus, the final value is less volatile and the option price cheaper.

Consider N + 1 monitoring dates ti ∈ [0,T ], i = 0, . . . ,N.

Where T is the maturity and ∆t := ti+1 − ti ,∀i (equal-spaced).

Assume the initial state of the price process to be known, S(0) = S0.

Let averaged price be defined as AN := 1
N+1

∑N
i=0 S(ti ), the payoff of

the European-style Asian call option is

v(S ,T ) = (AN − K )+ .

The risk-neutral option valuation formula,

v(x , t) = e−r(T−t)E [v(y ,T )|x ] = e−r(T−t)

∫
R
v(y ,T )f (y |x)dy ,

with r the risk-free rate, T the maturity, f (y |x) the transitional
density, typically unknown, and v(y ,T ) the payoff function.
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The SWIFT method

A structure for wavelets in L2(R) is called a multi-resolution analysis.

We start with a family of closed nested subspaces in L2(R),

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ,
⋂
m∈Z
Vm = {0} ,

⋃
m∈Z
Vm = L2(R),

where
f (x) ∈ Vm ⇐⇒ f (2x) ∈ Vm+1.

Then, it exists a function ϕ ∈ V0 generating an orthonormal basis,
denoted by {ϕm,k}k∈Z, for each Vm, ϕm,k(x) = 2m/2ϕ(2mx − k).

The function ϕ is called the scaling function or father wavelet.

For any f ∈ L2(R), a projection map of L2(R) onto Vm, denoted by
Pm : L2(R)→ Vm, is defined by means of

Pmf (x) =
∑
k∈Z

cm,kϕm,k(x), with cm,k = 〈f , ϕm,k〉 .
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The SWIFT method

In this work, we employ Shannon wavelets. A set of Shannon scaling
functions ϕm,k in the subspace Vm is defined as,

ϕm,k(x) = 2m/2 sin(π(2mx − k))

π(2mx − k)
= 2m/2ϕ(2mx − k), k ∈ Z,

where ϕ(z) = sinc(z), with sinc the cardinal sine function.
Given a function f ∈ L2 (R), we will consider its expansion in terms of
Shannon scaling functions at the level of resolution m.

-10 -5 0 5 10
-0.2

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10
-0.5

0

0.5

1

1.5

2
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The SWIFT method

Our aim is to recover the coefficients cm,k of this approximation from

the Fourier transform of the function f , denoted by f̂ , defined as

f̂ (ξ) =

∫
R
e−iξx f (x)dx ,

where i is the imaginary unit.
Following wavelets theory, a function f ∈ L2 (R) can be approximated
at the level of resolution m by,

f (x) ≈ Pmf (x) =
∑
k∈Z

cm,kϕm,k(x),

where Pmf converges to f in L2 (R), i.e. ‖f −Pmf ‖2 → 0,m→ +∞.
The infinite series is well-approximated (see Lemma 1 of [3]) by

Pmf (x) ≈ fm(x) :=

k2∑
k=k1

cm,kϕm,k(x),

for certain accurately chosen values k1 and k2.
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The SWIFT method

Computation of the coefficients cm,k : by definition,

cm,k = 〈f , ϕm,k〉 =

∫
R
f (x)ϕ̄m,k(x)dx = 2m/2

∫
R
f (x)ϕ(2mx − k)dx .

By using the classical Vieta’s formula,

ϕ(x) = sinc(x) =
+∞∏
j=1

cos
(πx

2j

)
.

We truncate the infinite product into a finite product with J terms,
then, thanks to the cosine product-to-sum identity,

J∏
j=1

cos
(πx

2j

)
=

1

2J−1

2J−1∑
j=1

cos

(
2j − 1

2J
πx

)
.

Then,∫
R
f (x)ϕ̄m,k(x)dx ≈ 2m/2

2J−1

2J−1∑
j=1

∫
R
f (x) cos

(
2j − 1

2J
π (2mx − k)

)
dx .

Á. Leitao & L. Ortiz-Gracia & E. Wagner Asian SWIFT method December 19, 2018 10 / 45



The SWIFT method

Noting that <
(
f̂ (ξ)

)
=
∫
R f (x) cos(ξx)dx and

f̂ (ξ)e
ikπ 2j−1

2J =

∫
R
e
−i
(
ξx−kπ 2j−1

2J

)
f (x)dx .

Thus, we have,

cm,k ≈
2m/2

2J−1

2J−1∑
j=1

<
[
f̂

(
(2j − 1)π2m

2J

)
e

ikπ(2j−1)

2J

]
.

Putting everything together gives the following approximation of f ,

f (x) ≈
k2∑

k=k1

cm,kϕm,k(x).
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SWIFT option valuation formulas

Truncating the integration range on [a, b] in the risk-neutral valuation
formula, and replacing density f by the SWIFT approximation,

v(x , t0) ≈ e−rT
k2∑

k=k1

cm,kVm,k ,

where,

Vm,k :=

∫ b

a
v(y ,T )ϕm,k(y |x)dy .

By employing the Vieta’s formula again and interchanging summation
and integration operations, we obtain that

Vm,k ≈
2m/2

2J−1

2J−1∑
j=1

∫ b

a
v(y ,T ) cos

(
2j − 1

2J
π (2my − k)

)
dy .
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SWIFT option sensitivities

Under the SWIFT framework, the estimation of the option price
sensitivities, the so-called Greeks.

The Greeks are defined as the partial derivatives of the option price
with respect to some market/model parameter.

They can be efficiently calculated by constructing similar series
expansions.

Generally, two possible situations can appear: the option price
depends only on the parameter of interest either through the density
function or payoff function.

The partial derivative of the characteristic function and, hence, the
density coefficients and the payoff function can be analytically
computed for many financial models and option contracts.
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SWIFT option sensitivities

We firstly assume that the option price depends on the parameter of
interest only through the density function,

cm,k(ξ, ς) =
2m/2

2J−1

2J−1∑
j=1

<
[
f̂ (ξ; ς) e

ikξ
2m

]
,

where ξ = (2j−1)π2m

2J
and ς the parameter of interest.

By differentiating (n times) the characteristic function, the “Greek”
density coefficients

c
(n)
m,k(ξ) :=

∂ncm,k(ξ, ς)

∂ςn
=

2m/2

2J−1

2J−1∑
j=1

<

[
∂n f̂ (ξ; ς)

∂ςn
e

ikξ
2m

]
.

For example, the so-called Delta, ∆, and Gamma, Γ, the first and

second derivatives w.r.t. S0, are computed by plugging the c
(n)
m,k ,

∆ := e−rT
k2∑

k=k1

c
(1)
m,kVm,k , Γ := e−rT

k2∑
k=k1

c
(2)
m,kVm,k .
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SWIFT option sensitivities

A second possible situation appears when the option value depends
on the parameter of interest, ς, through the payoff coefficients, i.e.,
Vm,k(ς).

Thus, the “Greek” payoff coefficients need to be determined by
differentiating Vm,k with respect to ς.

Particularly, the solution for the Greeks ∆ and Γ would be

∆ := e−rT
k2∑

k=k1

cm,kV
(1)
m,k(ς), Γ := e−rT

k2∑
k=k1

cm,kV
(2)
m,k(ς),

where now the cm,k are kept invariant and V
(n)
m,k represents the n-th

derivative of Vm,k .

In the context of Fourier inversion techniques, closed-form solutions
for these coefficients can be usually derived.

The case of the arithmetic Asian payoff will be addressed in the next
section.
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Optimal scale m, series bounds k1 and k2, and parameter J

The quality in the approximation provided by the SWIFT method is
affected by the scale m, the number of terms in the Vieta’s
approximation and the series truncation limits, k1 and k2.

By Lemma 3 of [2], the error in the projection approximation of
function f is bounded by

|f (x)− Pmf (x)| ≤ 1

2π

∫
|ξ|>2mπ

∣∣∣f̂ (ξ)
∣∣∣dξ.

As the characteristic function, f̂ , is assumed to be known, we can
compute m given a prescribed tolerance εm.

Applying a simple quadrature rule, the error bound reads

1

2π

(∣∣∣f̂ (−2mπ)
∣∣∣+
∣∣∣f̂ (2mπ)

∣∣∣) .
More involved numerical quadratures have been tested, but the
observed differences are negligible.
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Optimal scale m, series bounds k1 and k2, and parameter J

k1 and k2 can be computed based on the integration range [a, b] as

k1 := b2mac and k2 := d2mbe,

where m is the scale of approximation.

Therefore we first need to choose the interval limits, a and b, in such
a way that the loss of density mass is minimized.

Cumulants-based approach,

[a, b] :=

[
κ1(Y )− L

√
κ2(Y ) +

√
κ4(Y ), κ1(Y ) + L

√
κ2(Y ) +

√
κ4(Y )

]
,

with κn(Y ) representing the n-th cumulant (defined from the
cumulant-generating function, K(τ), as κn = K(n)(0)) of the random
variable Y and L a constant conveniently chosen.
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Optimal scale m, series bounds k1 and k2, and parameter J

The dependence on m turns out to be very convenient also in the
selection of the interval [a, b].

This constitutes one of the great advantages of the SWIFT method
with respect to other Fourier inversion-based techniques, where a and
b are arbitrarily selected.

Thus, as we know that our approximation at scale m satisfies the
tolerance εm, the error order due to the truncation should not exceed
the order of εm.

We can therefore develop an adaptive interval selection algorithm that
updates the truncated range [a, b] in each iteration, computes the
truncation error, ετ , in the approximated density using that interval
and stops when the same tolerance condition εm is prescribed.
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Optimal scale m, series bounds k1 and k2, and parameter J

The parameter J is then chosen to be constant (it could be selected
as a function of k) based on the previously determined quantities.

Doing so, we can benefit from the use of FFT algorithm.

By Theorem 1 of [3], let c∗m,k the approximated coefficients,

|cm,k − c∗m,k | ≤ 2m/2

(
2ε+

√
2A‖f ‖2

(πMm,k)2

22(J+1) − (πMm,k)2

)
,

assuming J ≥ log2(πMm,k), and with
Mm,k := max (|2mA− k | , |2mA+ k|), A := max (|a| , |b|),
H(x) = F (−x) + 1− F (x) and H(A) < ε.

Thus, the number of Vieta factor is selected as

J := dlog (πMm)e with Mm := max
k1<k<k2

Mm,k ,
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SWIFT for Asian options under exponential Lévy models

Exponential Lévy models: log S(t), follows a Lévy process.

The Lévy dynamics have a stationary and i.i.d. increments and it can
be written in the form

X (t) = µt + W (t) + J(t) + lim
ε↓0

Dε(t),

where W is a d-dimensional Brownian motion with covariance matrix
Σ, drift vector µ ∈ Rd , J is a compound Poisson process and Dε is a
compensated compound Poisson process. A measure ν on Rd is
adopted, called Lévy measure.
The Lévy processes are fully determined by the characteristic triplet
[Σ, µ, ν]. From the Lévy-Khintchine formula, the characteristic

function, defined as f̂ (ξ) = E
[
eiξX (t)

]
, reads

f̂ (ξ) = etϑ(ξ), ϑ(ξ) = iµ · ξ +
1

2
Σξ · ξ +

∫
Rd

(
eiξ·x − 1− iξ · x1|x|≤1

)
ν(dx),

where ϑ is often called the characteristic exponent.
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SWIFT for Asian options under exponential Lévy models

The explicit representation of the characteristic function in the Lévy
processes framework supposes a great advantage.
Allows to recover the density, f , by Fourier inversion numerical
techniques and price European options highly efficiently.
The characteristic function of exponential Lévy dynamics is often
available in a tractable form (ex. Black-Scholes, Merton, Variance
Gamma (VG), Normal Inverse Gaussian (NIG)).
But, for arithmetic Asian options, the derivation of the corresponding
characteristic function is rather involved.
Lets start by defining the return or increment process Ri ,

Ri := log

(
S(ti )

S(ti−1)

)
i = 1, . . . ,N.

Based on Ri , we define a new process

Yi := RN+1−i + Zi−1, i = 2, . . . ,N,

where Y1 = RN and Zi := log
(
1 + eYi

)
, ∀i .

Á. Leitao & L. Ortiz-Gracia & E. Wagner Asian SWIFT method December 19, 2018 21 / 45



SWIFT for Asian options under exponential Lévy models

Applying the Carverhill-Clewlow-Hodges factorization to Yi ,

1

N + 1

N∑
i=0

S(ti ) =

(
1 + eYN

)
S0

N + 1
.

Thus, the option price for arithmetic Asian contracts can be now
expressed in terms of the transitional density of the YN as

v(x , t0) = e−rT
∫
R
v(y ,T )fYN

(y |x)dy ,

where x = log S0 and the call payoff function is given by

v(y ,T ) =

(
S0 (1 + ey )

N + 1
− K

)+

Again, the probability density function fYN
is generally not known,

even for Lévy processes. However, as the process YN is defined in a
recursive manner, the characteristic function of YN can be computed
iteratively as well.
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Characteristic function of YN

By the definition of Yi , the initial and recursive characteristic
functions are

f̂Y1(ξ) = f̂RN
(ξ) = f̂R(ξ),

f̂Yi
(ξ) = f̂RN+1−i+Zi−1

(ξ) = f̂RN+1−i
(ξ) · f̂Zi−1

(ξ) = f̂R(ξ) · f̂Zi−1
(ξ).

By definition, the characteristic function of Zi−1 reads

f̂Zi−1
(ξ) := E

[
e−iξ log(1+eYi−1)

]
=

∫
R

(1 + ex)−iξ fYi−1
(x)dx .

We can again apply the wavelet approximation to fYi−1
as

f̂Zi−1
(ξ) ≈

∫
R

(1 + ex)−iξ
k2∑

k=k1

cm,kϕm,k(x)dx

= 2
m
2

k2∑
k=k1

cm,k

∫
R

(ex + 1)−iξ sinc (2mx − k) dx .
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Characteristic function of YN

The integral on the right hand side needs to be computed efficiently
to make the method easily implementable, robust and very fast.

State-of-the-art methods from the literature rely on solving the
integral by means of quadratures.

Theorem (Theorem 1.3.2 of [4])

Let f be defined on R and let its Fourier transform f̂ be such that for some
positive constant d , |f̂ (ω)| = O

(
e−d |ω|

)
for ω → ±∞, then as h→ 0

1

h

∫
R
f (x)Sj ,h(x)dx − f (jh) = O

(
e−

πd
h

)
,

where Sj ,h(x) = sinc
(
x
h − j

)
for j ∈ Z.

The theorem above allows us to approximate the integral above
provided that g(x) := (ex + 1)−iξ satisfies the hypothesis.
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Characteristic function of YN

If we consider h = 1
2m , then it follows from Theorem 1 that∫

R
g(x)sinc (2mx − k) dx ≈ hg (kh) =

1

2m

(
e

k
2m + 1

)−iξ
.

Thus, f̂Zi−1
can be approximated by

f̂Zi−1
(ξ) ≈ 2−

m
2

k2∑
k=k1

cm,k

(
e

k
2m + 1

)−iξ
.

Finally,

f̂Yi
(ξ) = f̂R(ξ)f̂Zi−1

≈ f̂R(ξ)2−
m
2

k2∑
k=k1

cm,k

(
e

k
2m + 1

)−iξ
,

where the density coefficients cm,k are computed as follows

cm,k ≈
2m/2

2J−1

2J−1∑
j=0

<
{
f̂Yi−1

(
(2j − 1)π2m

2J

)
e

ikπ(2j−1)

2J

}
.
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Characteristic function of YN

It remains to prove that function g(x) = (ex + 1)−iξ satisfies
|ĝ(ω)| = O

(
e−d |ω|

)
for ω → ±∞.

We have derived an expression for ĝ(ω),

Proposition

Let g(x) = (ex + 1)z , where z = −iξ and x , ξ ∈ R. Then,

ĝ(ω) =
∞∑
n=0

(
z

n

)
2n − z

(n − iω)(n + i(ω + ξ))
, ω ∈ R.
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Proof expression ĝ(ω)

Proposition

Let z ∈ C and
(z
n

)
= z(z−1)(z−2)···(z−n+1)

n! . Then the series
∑∞

n=0

(z
n

)
xn

converges to (1 + x)z for all complex x with |x | < 1.

Corollary

Let z ∈ C. Then the series
∑∞

n=0

(z
n

)
xny z−n converges to (x + y)z for all

complex x , y with |x | < |y |.

Proof.

The proof follows from Proposition by taking into account that

(x + y)z =
(
y
[
x
y + 1

])z
.
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Proof expression ĝ(ω)

Proof.
From the definition, we split the integral in two parts

ĝ(ω) =

∫
R
e−iωxg(x)dx =

∫ 0

−∞
e−iωxg(x)dx +

∫ ∞
0

e−iωxg(x)dx ,

and observe that, by Corollary above,

(ex + 1)z =
∞∑
n=0

(z
n

)
enx , for x < 0, and (ex + 1)z =

∞∑
n=0

(z
n

)
e(z−n)x , for x > 0.

Replacing expressions and interchanging the integral and the sum, then we obtain,

ĝ(ω) =
∞∑
n=0

(z
n

)∫ 0

−∞
e−iωxenxdx +

∞∑
n=0

(z
n

)∫ ∞
0

e−iωxe(z−n)xdx .

Finally, solving the integrals,

ĝ(ω) =
∞∑
n=0

(z
n

) 1

n − iω
+
∞∑
n=0

(z
n

) 1

n + i(ω + ξ)
=
∞∑
n=0

(z
n

) 2n − z

(n − iω)(n + i(ω + ξ))
.
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Proof expression ĝ(ω)

It is rather complicated to get a closed-form solution for the modulus
of ĝ(ω) from this expression.
By using Wolfram Mathematica 11.2, the infinite sum is written as

ĝ(ω) =
ξ

2ω + ξ

[
e−πω (B−1 (−iω, 1 + z) + 2B−1 (1− iω, z)) +

+ Γ (iω − z)
(

2(iω − z) 2F̃1 (1− z , 1 + iω − z ; 2 + iω − z ;−1)−

− 2F̃1 (−z , iω − z ; 1 + iω − z ;−1)
)]
,

in terms of gamma, Γ, beta, B, and regularized hypergeometric,

2F̃1(a, b; c ; ν). (Modulus represented in next slide).
The shape of |ĝ(ω)| does not depend on the value given to ξ.
Different ξ just originates a shift of the same function.
The two peaks observed in the plot correspond to the poles of ĝ(ω)
located at ω = 0 and ω = −ξ.
ĝ(ω) presents a symmetry at ω = −ξ/2 (it is straightforward to see
that ĝ(ω − ξ/2) = ĝ(−ω − ξ/2)).
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“Proof” modulus of ĝ(ω)

Representing |ĝ(ω)|,

g(ω)
0 ω ≤ 0
ξ ⅇ-π ω

2 ω+ξ
ω > 0

0 ω ≥ -ξ
ξ ⅇ-π ξ+ω

2 ξ+ω+ξ
ω < -ξ

10-16

10-11

10-6

10-1

104

Figure: Modulus of ĝ(ω).
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General application

The following theorem generalises the results stated in the previous
Theorem. Thus, it can be applied under weaker conditions on the
decay of |ĝ(ω)|.

Theorem

Let f be defined on R and let f̂ be its Fourier transform. Then,∣∣∣∣1h
∫
R
f (x)Sj ,h(x)dx − f (jh)

∣∣∣∣ ≤ 1

2π

∫
|ω|>π

h

∣∣∣f̂ (ω)
∣∣∣ dω,

where Sj ,h(x) = sinc
(
x
h − j

)
for j ∈ Z.
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General application - proof

Proof.
As mentioned in Lemma 3 of [2], the approximation error |f (x)− Pmf (x)| is uniformly bounded
for all x ∈ R,

|f (x)− Pmf (x)| ≤
1

2π

∫
|ω|>2mπ

∣∣∣f̂ (ω)
∣∣∣dω,

where Pmf (x) =
∑

k∈Z cm,kϕm,k (x). In particular, this is valid for x = jh with h = 1/2m,

|f (jh)− Pmf (jh)| ≤
1

2π

∫
|ω|>2mπ

∣∣∣f̂ (ω)
∣∣∣dω.

We observe that
Pmf (jh) =

∑
k∈Z

cm,kϕm,k (jh) =
∑
k∈Z

cm,k2m/2ϕ(j − k),

where ϕ(j − k) = δjk , and δjk is the Kronecker delta and then Pmf (jh) = 2m/2cm,j . Finally, if
we take into account that cm,j =

∫
R f (x)ϕm,j (x)dx . Thus,

Pmf (jh) = 2m/2 · 2m/2
∫
R
f (x)ϕ(2mx − j)dx = 2m

∫
R
f (x)sinc(2mx − j)dx ,

and this concludes the proof since 2m = 1/h.

Á. Leitao & L. Ortiz-Gracia & E. Wagner Asian SWIFT method December 19, 2018 32 / 45



Error bound of f̂Zi−1
(ξ)

The error committed in the approximation of f̂Zi−1
(ξ) is bounded.

Proposition

Let FZi−1
(ξ), GZi−1

(ξ) and E(ξ) be defined as follows,

FZi−1
(ξ) = 2

m
2

k2∑
k=k1

cm,k

∫
R

(ex + 1)−iξ sinc (2mx − k)dx ,

GZi−1
(ξ) = 2−

m
2

k2∑
k=k1

cm,k

(
e

k
2m + 1

)−iξ
,

and the difference, E(ξ) = FZi−1
(ξ)− GZi−1

(ξ).
Then, |E(ξ)| is uniformly bounded by

|E(ξ)| ≤ C(k2 − k1 + 1)e−π
22m

where C is a constant.
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Error bound of f̂Zi−1
(ξ) - proof

Proof.
We observe that,

E(ξ) = 2−
m
2

k2∑
k=k1

cm,k

[
2m

∫
R

(ex + 1)−iξ sinc (2mx − k)dx −
(
e

k
2m + 1

)−iξ]
.

Then, by Theorem 1 with d = π,

|E(ξ)| ≤ 2−
m
2 C

k2∑
k=k1

|cm,k |e−π
22m

,

for a certain constant C. The proposition holds by taking into account that,

|cm,k | ≤
∫
R
f (x)|ϕm,k(x)|dx ≤ 2

m
2 ,

where the last inequality is satisfied since f is a density function and
|ϕm,k(x)| ≤ 2

m
2 .
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Payoff coefficients

To complete the SWIFT pricing formula, compute the payoff
coefficients, Vm,k ,

Vm,k =
2m/2

2J−1

2J−1∑
j=1

[
S0

N + 1

(
I j ,k2 (x̃ , b) + I j ,k0 (x̃ , b)

)
− KI j ,k0 (x̃ , b)

]
,

where x̃ = log
(
K(N+1)

S0
− 1
)

and the functions I j ,k0 and I j ,k2 are

defined by the following integrals

I j ,k0 (x1, x2) :=

∫ x2

x1

cos (Cj (2my − k))dy ,

I j ,k2 (x1, x2) :=

∫ x2

x1

ey cos (Cj (2my − k))dy ,

with Cj = 2j−1
2J

π. These integrals are analytically available.
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“Greek” coefficients

We consider ∆ and Γ. In the context of Asian options under Lévy
processes, only the payoff coefficients, Vm,k are affected by S0. Thus,
by differentiating Vm,k with respect to S0, we obtain

V
(1)
m,k

=
2m/2

2J−1

2J−1∑
j=1

 I
j,k
2 (x̃, b) + I

j,k
0 (x̃, b)

N + 1
+

S0

(
∂I

j,k
2

(x̃,b)

∂S0
+

∂I
j,k
0

(x̃,b)

∂S0

)
N + 1

− K
∂I

j,k
0 (x̃, b)

∂S0

 .

Applying the chain rule, the partial derivatives of I j ,ku , u ∈ {0, 2},

∂I j ,ku (x̃ , b)

∂S0
=
∂I j ,ku (x̃ , b)

∂x̃

∂x̃

∂S0
,

∂I j ,ku (a, x̃)

∂S0
=
∂I j ,ku (a, x̃)

∂x̃

∂x̃

∂S0
,

where
∂x̃

∂S0
= − K (N + 1)

S0K (N + 1)− S2
0

,

and ∂I j,ku (x̃ ,b)
∂x̃ and ∂I j,ku (a,x̃)

∂x̃ have analytic solution.
Following the same procedure, a closed-form solution can be similarly
derived for the second derivative of Vm,k .
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Numerical results

We compare the SWIFT method against a state-of-the-art method,
the well-known COS method, particularly the COS variant for
arithmetic Asian option, called ASCOS method [5].

To the best of our knowledge, the ASCOS method provides the best
balance between accuracy and efficiency.

Arithmetic Asian call option valuation with varying number of
monitoring dates, N = 12 (monthly), N = 50 (weekly) and N = 250
(daily), and conceptually different underlying Lévy dynamics:
Geometric Brownian motion (GBM) and Normal inverse Gaussian
(NIG).

We assess not only the accuracy in the solution but also the
computational performance.

All the experiments have been conducted in a computer system with
the following characteristics: CPU Intel Core i7-4720HQ 2.6GHz and
memory of 16GB RAM. The employed software package is Matlab
R2017b.
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Reference GBM

# Decimals Method N = 12 N = 50 N = 250

4
ASCOS Nc = 128, nq = 200 Nc = 128, nq = 200 Nc = 128, nq = 200
SWIFT m = 5 m = 6 m = 7

6
ASCOS Nc = 144, nq = 225 Nc = 384, nq = 600 Nc = 384, nq = 600
SWIFT m = 5 m = 6 m = 7

8
ASCOS Nc = 192, nq = 300 Nc = 384, nq = 600 Nc = 768, nq = 1200
SWIFT m = 5 m = 6 m = 8

10
ASCOS Nc = 256, nq = 400 Nc = 512, nq = 800 Nc = 5120, nq = 8000
SWIFT m = 6 m = 7 m = 8

Table: GBM. The reference values are 11.9049157487 (N = 12), 11.9329382045
(N = 50) and 11.9405631571 (N = 250).
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Reference NIG

# Decimals Method N = 12 N = 50 N = 250

1
ASCOS Nc = 64, nq = 100 Nc = 128, nq = 200 Nc = 128, nq = 200
SWIFT m = 5 m = 5 m = 4

2
ASCOS Nc = 128, nq = 200 Nc = 128, nq = 200 Nc = 192, nq = 300
SWIFT m = 6 m = 5 m = 5

3
ASCOS Nc = 128, nq = 200 Nc = 192, nq = 300 Nc = 192, nq = 300
SWIFT m = 6 m = 5 m = 7

4
ASCOS Nc = 256, nq = 400 Nc = 256, nq = 400 Nc = 512, nq = 800
SWIFT m = 7 m = 8 m = 9

Table: NIG. The reference values are 1.0135 (N = 12), 1.0377 (N = 50) and
1.0444 (N = 250).
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Results on GBM

GBM N = 12 N = 50 N = 250

ASCOS

Nc = 64, nq = 100
Error 3.75× 10−4 8.34× 10−4 7.17× 10−3

Time (sec.) 0.03 0.02 0.01

Nc = 128, nq = 200
Error 8.37× 10−7 7.43× 10−6 3.82× 10−5

Time (sec.) 0.03 0.02 0.02

Nc = 256, nq = 400
Error = 5.33× 10−7 1.58× 10−7

Time (sec.) 0.16 0.12 0.11

Nc = 512, nq = 800
Error = = 3.04× 10−8

Time (sec.) 1.96 1.80 1.85

Nc = 1024, nq = 1600
Error = = =

Time (sec.) 13.99 13.99 14.25

SWIFT

m = 4
Error 2.70× 10−4 1.27× 10−2 3.82× 10−2

Time (sec.) 0.01 0.01 0.03

m = 5
Error 7.47× 10−9 9.78× 10−5 4.01× 10−3

Time (sec.) 0.01 0.02 0.06

m = 6
Error = 3.55× 10−10 6.96× 10−4

Time (sec.) 0.02 0.10 0.40

m = 7
Error = = 1.21× 10−8

Time (sec.) 0.08 0.34 1.37

m = 8
Error = = =

Time (sec.) 0.33 1.31 5.11

Table: SWIFT vs. ASCOS. Setting: GBM, S0 = 100, r = 0.0367, σ = 0.17801,
T = 1 and K = 90. The reference values are 11.9049157487 (N = 12),
11.9329382045 (N = 50) and 11.9405631571 (N = 250).
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Results on NIG

NIG N = 12 N = 50 N = 250

ASCOS

Nc = 64, nq = 100
Abs error 7.78× 10−3 1.71× 10−1 8.75× 10−2

CPU time 0.03 0.03 0.02

Nc = 128, nq = 200
Abs error 2.60× 10−4 5.89× 10−3 1.49× 10−2

CPU time 0.03 0.03 0.03

Nc = 256, nq = 400
Abs error = = 1.42× 10−4

CPU time 0.19 0.17 0.15

Nc = 512, nq = 800
Abs error = = =
CPU time 1.98 1.96 2.02

Nc = 1024, nq = 1600
Abs error = = =
CPU time 14.38 14.22 14.71

SWIFT

m = 4
Abs error 9.72× 10−2 9.27× 10−2 4.01× 10−2

CPU time 0.02 0.02 0.04

m = 5
Abs error 5.69× 10−3 6.92× 10−4 4.50× 10−3

CPU time 0.02 0.03 0.08

m = 6
Abs error 2.13× 10−4 9.12× 10−4 9.11× 10−4

CPU time 0.02 0.12 0.48

m = 7
Abs error = = =
CPU time 0.13 0.47 1.52

m = 8
Abs error = = =
CPU time 0.39 1.46 5.85

Table: SWIFT vs. ASCOS. Setting: NIG, S0 = 100, r = 0.0367, σ = 0.0,
α = 6.1882, β = −3.8941, δ = 0.1622, T = 1 and K = 110. The reference
values are 1.0135 (N = 12), 1.0377 (N = 50) and 1.0444 (N = 250).
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Results Greeks

Strike Method K = 80% K = 100% K = 120%

GBM

∆
SWIFT 0.97573 0.57645 0.05984

Ref. 0.97519 0.57036 0.05979

Γ
SWIFT 0.00182 0.03788 0.01123

Ref. 0.00181 0.03777 0.01145

NIG

∆
SWIFT 0.95132 0.67561 0.03562

Ref. 0.95015 0.67220 0.03503

Γ
SWIFT 0.00268 0.03639 0.00716

Ref. 0.00272 0.03617 0.00733

Table: Option sensitivities, Greeks ∆ and Γ. Strike K as a % of S0. Setting:
N = 12, m = 6.
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Conclusions

A new Fourier inversion-based technique has been proposed in the
framework of discretely monitored Asian options under exponential
Lévy processes.

The application of SWIFT to the Asian pricing problem allows to
overcome the main drawbacks attributed to this type of methods.

Specially, SWIFT allows to avoid the numerical integration in the
recovery of the characteristic function.

SWIFT results in a highly accurate and fast technique, outperforming
the competitors in most of the analysed situations.
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Á. Leitao & L. Ortiz-Gracia & E. Wagner Asian SWIFT method December 19, 2018 1 / 1


	Definitions
	Problem formulation
	The SWIFT method
	SWIFT for Asian options
	Numerical results
	Conclusions
	Appendix

