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Motivation

Arithmetic Asian options are still attractive in financial markets, but it
numerical treatment is rather challenging.

The valuation methods relying on Fourier inversion are highly
appreciated, particularly for calibration purposes, since they are
extremely fast, very accurate and easy to implement.

Lack of robustness in the existing methods (number of terms in the
expansion, numerical quadratures, truncation, etc.).

The use of wavelets for other option problems (Europeans,
early-exercise, etc.) has resulted in significant improvements in this
sense.

In the context of arithmetic Asian options, SWIFT provides extra
benefits.
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Problem formulation

In Asian derivatives, the option payoff function relies on some average
of the underlying values at a prescribed monitoring dates.

Thus, the final value is less volatile and the option price cheaper.

Consider N + 1 monitoring dates ti ∈ [0,T ], i = 0, . . . ,N.

Where T is the maturity and ∆t := ti+1 − ti ,∀i (equal-spaced).

Assume the initial state of the price process to be known, S(0) = S0.

Let averaged price be defined as AN := 1
N+1

∑N
i=0 S(ti ), the payoff of

the European-style Asian call option is

v(S ,T ) = (AN − K )+ .

The risk-neutral option valuation formula,

v(x , t) = e−r(T−t)E [v(y ,T )|x ] = e−r(T−t)

∫
R
v(y ,T )f (y |x)dy ,

with r the risk-free rate, T the maturity, f (y |x) the transitional
density, typically unknown, and v(y ,T ) the payoff function.
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The SWIFT method

A structure for wavelets in L2(R) is called a multi-resolution analysis.

We start with a family of closed nested subspaces in L2(R),

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ,
⋂
m∈Z
Vm = {0} ,

⋃
m∈Z
Vm = L2(R),

where
f (x) ∈ Vm ⇐⇒ f (2x) ∈ Vm+1.

Then, it exists a function ϕ ∈ V0 generating an orthonormal basis,
denoted by {ϕm,k}k∈Z, for each Vm, ϕm,k(x) = 2m/2ϕ(2mx − k).

The function ϕ is called the scaling function or father wavelet.

For any f ∈ L2(R), a projection map of L2(R) onto Vm, denoted by
Pm : L2(R)→ Vm, is defined by means of

Pmf (x) =
∑
k∈Z

cm,kϕm,k(x), with cm,k = 〈f , ϕm,k〉 .
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The SWIFT method

In this work, we employ Shannon wavelets. A set of Shannon scaling
functions ϕm,k in the subspace Vm is defined as,

ϕm,k(x) = 2m/2 sin(π(2mx − k))

π(2mx − k)
= 2m/2ϕ(2mx − k), k ∈ Z,

where ϕ(z) = sinc(z), with sinc the cardinal sine function.

Given a function f ∈ L2 (R), we will consider its expansion in terms of
Shannon scaling functions at the level of resolution m.

Our aim is to recover the coefficients cm,k of this approximation from

the Fourier transform of the function f , denoted by f̂ , defined as

f̂ (ξ) =

∫
R
e−iξx f (x)dx ,

where i is the imaginary unit.
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The SWIFT method

Following wavelets theory, a function f ∈ L2 (R) can be approximated
at the level of resolution m by,

f (x) ≈ Pmf (x) =
∑
k∈Z

cm,kϕm,k(x),

where Pmf converges to f in L2 (R), i.e. ‖f − Pmf ‖2 → 0, when
m→ +∞.

The infinite series is well-approximated (see Lemma 1 of [2]) by a
finite summation,

Pmf (x) ≈ fm(x) :=

k2∑
k=k1

cm,kϕm,k(x),

for certain accurately chosen values k1 and k2.
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The SWIFT method

Computation of the coefficients cm,k : by definition,

cm,k = 〈f , ϕm,k〉 =

∫
R
f (x)ϕ̄m,k(x)dx = 2m/2

∫
R
f (x)ϕ(2mx − k)dx .

Using the classical Vieta’s formula truncated with 2J−1 terms, the
cosine product-to-sum identity and the definition of the characteristic
function, the coefficients, cm,k , can be approximated by

cm,k ≈
2m/2

2J−1

2J−1∑
j=1

<
[
f̂

(
(2j − 1)π2m

2J

)
e

ikπ(2j−1)

2J

]
.

Putting everything together gives the following approximation of f

f (x) ≈
k2∑

k=k1

cm,kϕm,k(x).
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SWIFT option valuation formulas

Truncating the integration range on [a, b] and replacing density f by
the SWIFT approximation,

v(x , t0) ≈ e−rT
k2∑

k=k1

cm,kVm,k ,

where,

Vm,k :=

∫ b

a
v(y ,T )ϕm,k(y |x)dy .

By employing the Vieta’s formula again and interchanging summation
and integration operations, we obtain that

Vm,k ≈
2m/2

2J−1

2J−1∑
j=1

∫ b

a
v(y ,T ) cos

(
2j − 1

2J
π (2my − k)

)
dy .
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SWIFT for Asian options under exponential Lévy models

Exponential Lévy models: log S(t), follows a Lévy process.

The Lévy dynamics have a stationary and i.i.d. increments, fully
described from its characteristic function.

But, for arithmetic Asian options, the derivation of the corresponding
characteristic function is rather involved.

Lets start by defining the return or increment process Ri ,

Ri := log

(
S(ti )

S(ti−1)

)
i = 1, . . . ,N.

Based on Ri , we define a new process

Yi := RN+1−i + Zi−1, i = 2, . . . ,N,

where Y1 = RN and Zi := log
(
1 + eYi

)
, ∀i .
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SWIFT for Asian options under exponential Lévy models

Applying the Carverhill-Clewlow-Hodges factorization to Yi ,

1

N + 1

N∑
i=0

S(ti ) =

(
1 + eYN

)
S0

N + 1
.

Thus, the option price for arithmetic Asian contracts can be now
expressed in terms of the transitional density of the YN as

v(x , t0) = e−rT
∫
R
v(y ,T )fYN

(y)dy ,

where x = log S0 and the call payoff function is given by

v(y ,T ) =

(
S0 (1 + ey )

N + 1
− K

)+

Again, the probability density function fYN
is generally not known,

even for Lévy processes. However, as the process YN is defined in a
recursive manner, the characteristic function of YN can be computed
iteratively as well.
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Characteristic function of YN

By the definition of Yi , the initial and recursive characteristic
functions are

f̂Y1(ξ) = f̂RN
(ξ) = f̂R(ξ),

f̂Yi
(ξ) = f̂RN+1−i+Zi−1

(ξ) = f̂RN+1−i
(ξ) · f̂Zi−1

(ξ) = f̂R(ξ) · f̂Zi−1
(ξ).

By definition, the characteristic function of Zi−1 reads

f̂Zi−1
(ξ) := E

[
e−iξ log(1+eYi−1)

]
=

∫
R

(1 + ex)−iξ fYi−1
(x)dx .

We can again apply the wavelet approximation to fYi−1
as

f̂Zi−1
(ξ) ≈

∫
R

(1 + ex)−iξ
k2∑

k=k1

cm,kϕm,k(x)dx

= 2
m
2

k2∑
k=k1

cm,k

∫
R

(ex + 1)−iξ sinc (2mx − k) dx .
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Characteristic function of YN

The integral on the right hand side needs to be computed efficiently
to make the method easily implementable, robust and very fast.

State-of-the-art methods from the literature rely on solving the
integral by means of quadratures.

Theorem (Theorem 1.3.2 of [3])

Let f be defined on R and let its Fourier transform f̂ be such that for some
positive constant d, |f̂ (ω)| = O

(
e−d |ω|

)
for ω → ±∞, then as h→ 0

1

h

∫
R
f (x)Sj ,h(x)dx − f (jh) = O

(
e−

πd
h

)
,

where Sj ,h(x) = sinc
(
x
h − j

)
for j ∈ Z.

Theorem 1 allows us to approximate the integral above provided that
g(x) := (ex + 1)−iξ satisfies the hypothesis.
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Characteristic function of YN

If we consider h = 1
2m , then it follows from Theorem 1 that∫

R
g(x)sinc (2mx − k) dx ≈ hg (kh) =

1

2m

(
e

k
2m + 1

)−iξ
.

Thus, f̂Zi−1
can be approximated by

f̂Zi−1
(ξ) ≈ 2−

m
2

k2∑
k=k1

cm,k

(
e

k
2m + 1

)−iξ
.

Finally,

f̂Yi
(ξ) = f̂R(ξ)f̂Zi−1

≈ f̂R(ξ)2−
m
2

k2∑
k=k1

cm,k

(
e

k
2m + 1

)−iξ
,

where the density coefficients cm,k are computed as follows

cm,k ≈
2m/2

2J−1

2J−1∑
j=0

<
{
f̂Yi−1

(
(2j − 1)π2m

2J

)
e

ikπ(2j−1)

2J

}
.
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Characteristic function of YN

It remains to prove that function g(x) = (ex + 1)−iξ satisfies
|ĝ(ω)| = O

(
e−d |ω|

)
for ω → ±∞.

We have derived an expression for ĝ(w),

Proposition

Let g(x) = (ex + 1)z , where z = −iξ and x , ξ ∈ R. Then,

ĝ(ω) =
∞∑
n=0

(
z

n

)
2n − z

(n − iω)(n + i(ω + ξ))
, ω ∈ R.

It is rather complicated to get a closed-form solution for the modulus
of ĝ(ω) from this expression.
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Characteristic function of YN

By employing Wolfram Mathematica 11.2, the infinite sum is written
as

ĝ(ω) =
ξ

2ω + ξ

[
e−πω (B−1 (−iω, 1 + z) + 2B−1 (1− iω, z)) +

+ Γ (iω − z)
(

2(iω − z) 2F̃1 (1− z , 1 + iω − z ; 2 + iω − z ;−1)−

− 2F̃1 (−z , iω − z ; 1 + iω − z ;−1)
)]
,

in terms of gamma, Γ, beta, B, and regularized hypergeometric,

2F̃1(a, b; c ; ν).
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Characteristic function of YN

Representing |ĝ(ω)|,

g(ω)
0 ω ≤ 0
ξ ⅇ-π ω

2 ω+ξ
ω > 0

0 ω ≥ -ξ
ξ ⅇ-π ξ+ω

2 ξ+ω+ξ
ω < -ξ

10-16

10-11

10-6

10-1

104

Figure: Modulus of ĝ(ω).
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Payoff coefficients

To complete the SWIFT pricing formula, compute the payoff
coefficients, Vm,k ,

Vm,k =
2m/2

2J−1

2J−1∑
j=1

[
S0

N + 1

(
I j ,k2 (x̃ , b) + I j ,k0 (x̃ , b)

)
− KI j ,k0 (x̃ , b)

]
,

where x̃ = log
(
K(N+1)

S0
− 1
)

and the functions I j ,k0 and I j ,k2 are

defined by the following integrals

I j ,k0 (x1, x2) :=

∫ x2

x1

cos (Cj (2my − k))dy ,

I j ,k2 (x1, x2) :=

∫ x2

x1

ey cos (Cj (2my − k))dy ,

with Cj = 2j−1
2J

π. These integrals are analytically available.
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Numerical results

We compare the SWIFT method against a state-of-the-art method,
the well-known COS method, particularly the COS variant for
arithmetic Asian option, called ASCOS method [4].

To the best of our knowledge, the ASCOS method provides the best
balance between accuracy and efficiency.

Arithmetic Asian call option valuation with varying number of
monitoring dates, N = 12 (monthly), N = 50 (weekly) and N = 250
(daily), and conceptually different underlying Lévy dynamics:
Geometric Brownian motion (GBM) and Normal inverse Gaussian
(NIG).

We assess not only the accuracy in the solution but also the
computational performance.

All the experiments have been conducted in a computer system with
the following characteristics: CPU Intel Core i7-4720HQ 2.6GHz and
memory of 16GB RAM. The employed software package is Matlab
R2017b.
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Results on GBM

GBM N = 12 N = 50 N = 250

ASCOS

Nc = 64, nq = 100
Error 3.75× 10−4 8.34× 10−4 7.17× 10−3

Time (sec.) 0.03 0.02 0.01

Nc = 128, nq = 200
Error 8.37× 10−7 7.43× 10−6 3.82× 10−5

Time (sec.) 0.03 0.02 0.02

Nc = 256, nq = 400
Error = 5.33× 10−7 1.58× 10−7

Time (sec.) 0.16 0.12 0.11

Nc = 512, nq = 800
Error = = 3.04× 10−8

Time (sec.) 1.96 1.80 1.85

Nc = 1024, nq = 1600
Error = = =

Time (sec.) 13.99 13.99 14.25

SWIFT

m = 4
Error 2.70× 10−4 1.27× 10−2 3.82× 10−2

Time (sec.) 0.01 0.01 0.03

m = 5
Error 7.47× 10−9 9.78× 10−5 4.01× 10−3

Time (sec.) 0.01 0.02 0.06

m = 6
Error = 3.55× 10−10 6.96× 10−4

Time (sec.) 0.02 0.10 0.40

m = 7
Error = = 1.21× 10−8

Time (sec.) 0.08 0.34 1.37

m = 8
Error = = =

Time (sec.) 0.33 1.31 5.11

Table: SWIFT vs. ASCOS. Setting: GBM, S0 = 100, r = 0.0367, σ = 0.17801,
T = 1 and K = 90. The reference values are 11.9049157487 (N = 12),
11.9329382045 (N = 50) and 11.9405631571 (N = 250).
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Results on NIG

NIG N = 12 N = 50 N = 250

ASCOS

Nc = 64, nq = 100
Abs error 7.78× 10−3 1.71× 10−1 8.75× 10−2

CPU time 0.03 0.03 0.02

Nc = 128, nq = 200
Abs error 2.60× 10−4 5.89× 10−3 1.49× 10−2

CPU time 0.03 0.03 0.03

Nc = 256, nq = 400
Abs error = = 1.42× 10−4

CPU time 0.19 0.17 0.15

Nc = 512, nq = 800
Abs error = = =
CPU time 1.98 1.96 2.02

Nc = 1024, nq = 1600
Abs error = = =
CPU time 14.38 14.22 14.71

SWIFT

m = 4
Abs error 9.72× 10−2 9.27× 10−2 4.01× 10−2

CPU time 0.02 0.02 0.04

m = 5
Abs error 5.69× 10−3 6.92× 10−4 4.50× 10−3

CPU time 0.02 0.03 0.08

m = 6
Abs error 2.13× 10−4 9.12× 10−4 9.11× 10−4

CPU time 0.02 0.12 0.48

m = 7
Abs error = = =
CPU time 0.13 0.47 1.52

m = 8
Abs error = = =
CPU time 0.39 1.46 5.85

Table: SWIFT vs. ASCOS. Setting: NIG, S0 = 100, r = 0.0367, σ = 0.0,
α = 6.1882, β = −3.8941, δ = 0.1622, T = 1 and K = 110. The reference
values are 1.0135 (N = 12), 1.0377 (N = 50) and 1.0444 (N = 250).
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Conclusions

A new Fourier inversion-based technique has been proposed in the
framework of discretely monitored Asian options under exponential
Lévy processes.

The application of SWIFT to the Asian pricing problem allows to
overcome the main drawbacks attributed to this type of methods.

Specially, SWIFT allows to avoid the numerical integration in the
recovery of the characteristic function.

SWIFT results in a highly accurate and fast technique, outperforming
the competitors in most of the analysed situations.
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Bonus - Proof expression ĝ(ω)

Proposition

Let z ∈ C and
(z
n

)
= z(z−1)(z−2)···(z−n+1)

n! . Then the series
∑∞

n=0

(z
n

)
xn

converges to (1 + x)z for all complex x with |x | < 1.

Corollary

Let z ∈ C. Then the series
∑∞

n=0

(z
n

)
xny z−n converges to (x + y)z for all

complex x , y with |x | < |y |.

Proof.

The proof follows from Proposition by taking into account that

(x + y)z =
(
y
[
x
y + 1

])z
.
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Bonus - Proof expression ĝ(ω)

Proof.
From the definition, we split the integral in two parts

ĝ(ω) =

∫
R
e−iωxg(x)dx =

∫ 0

−∞
e−iωxg(x)dx +

∫ ∞
0

e−iωxg(x)dx ,

and observe that, by Corollary above,

(ex + 1)z =
∞∑
n=0

(z
n

)
enx , for x < 0, and (ex + 1)z =

∞∑
n=0

(z
n

)
e(z−n)x , for x > 0.

Replacing expressions and interchanging the integral and the sum, then we obtain,

ĝ(ω) =
∞∑
n=0

(z
n

)∫ 0

−∞
e−iωxenxdx +

∞∑
n=0

(z
n

)∫ ∞
0

e−iωxe(z−n)xdx .

Finally, solving the integrals,

ĝ(ω) =
∞∑
n=0

(z
n

) 1

n − iω
+
∞∑
n=0

(z
n

) 1

n + i(ω + ξ)
=
∞∑
n=0

(z
n

) 2n − z

(n − iω)(n + i(ω + ξ))
.
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