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Motivation

@ Arithmetic Asian options are still attractive in financial markets, but it
numerical treatment is rather challenging.

@ The valuation methods relying on Fourier inversion are highly
appreciated, particularly for calibration purposes, since they are
extremely fast, very accurate and easy to implement.

@ Lack of robustness in the existing methods (number of terms in the
expansion, numerical quadratures, truncation, etc.).

@ The use of wavelets for other option problems (Europeans,
early-exercise, etc.) has resulted in significant improvements in this
sense.

@ In the context of arithmetic Asian options, SWIFT provides extra
benefits.

A. Leitao & L. Ortiz-Gracia & E. Wagner Asian SWIFT method July 10, 2018 2 /24



Outline

@ Problem formulation

© The SWIFT method

© SWIFT for Asian options
@ Numerical results

© Conclusions

A. Leitao & L. Ortiz-Gracia & E. Wagner Asian SWIFT method July 10, 2018 3/24



Problem formulation

@ In Asian derivatives, the option payoff function relies on some average
of the underlying values at a prescribed monitoring dates.

Thus, the final value is less volatile and the option price cheaper.
Consider N + 1 monitoring dates t; € [0, T],i =0,..., N.

Where T is the maturity and At := tj11 — t;, Vi (equal-spaced).
Assume the initial state of the price process to be known, S(0) = Sp.
Let averaged price be defined as Ay := %ﬂ Z,I'V:o 5(t;), the payoff of
the European-style Asian call option is

v(S,T)=(Av — K)T.

@ The risk-neutral option valuation formula,
v(x,1) =T IRy DM = 79 [ vly, TI(yIx0ay.

with r the risk-free rate, T the maturity, f(y|x) the transitional
density, typically unknown, and v(y, T) the payoff function.
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The SWIFT method

@ A structure for wavelets in L?(R) is called a multi-resolution analysis.
@ We start with a family of closed nested subspaces in L?(R),

LCVacWwawnc..., (Va={0}, U Va=1"®)
me7Z mezZ

where
f(x) € Vm < f(2x) € Vimt1.
@ Then, it exists a function ¢ € Vy generating an orthonormal basis,
denoted by {¢m k tkez, for each Vi, ©mk(x) = 2M20(2Mx — k).
@ The function ¢ is called the scaling function or father wavelet.

e For any f € L?(R), a projection map of L2(R) onto V,,, denoted by
Pm i L2(R) — Vp,, is defined by means of

'me(X) = Z Cm,k@m,k(x)a with Cmk = <f7 Spm,k> .
keZ
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The SWIFT method

@ In this work, we employ Shannon wavelets. A set of Shannon scaling
functions ¢, « in the subspace V, is defined as,

— 2m/2S|n(7T(2 X — k)) _ 2m/2@(2mx . k), k € Z,

where ¢(z) = sinc(z), with sinc the cardinal sine function.

e Given a function f € L? (R), we will consider its expansion in terms of
Shannon scaling functions at the level of resolution m.

@ Our aim is to recover the coefficients cp, j of this approximation from
the Fourier transform of the function f, denoted by f, defined as

f(f) = / e_iﬁxf(x)dx,
R
where i is the imaginary unit.
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The SWIFT method

e Following wavelets theory, a function f € L? (IR) can be approximated
at the level of resolution m by,

f( ) Pm X) Zcm kQDmk

kEZ

where P, converges to f in L% (R), i.e. ||f — Pmf|l2 — 0, when
m — +o0.

@ The infinite series is well-approximated (see Lemma 1 of [2]) by a
finite summation,

Pm ( )Nf X) _Zcmkwmk )

k=k1

for certain accurately chosen values k; and k.
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The SWIFT method
@ Computation of the coefficients ¢, x: by definition,

F(X) Bk (x)dx = 2M/2 /R F(x)p(2Mx — k)dx.

Cm,k = <f7 Som,k> :/

R

@ Using the classical Vieta's formula truncated with 27~ terms, the
cosine product-to-sum identity and the definition of the characteristic

function, the coefficients, ¢, x, can be approximated by

om/2 20 T /(2 — 1)m2m\ s
Cm,k**zj_lzye[f<21>e > ]
=1

@ Putting everything together gives the following approximation of f

ko
f(x) ~ Z Cm, kPm, k(X).

k=ki

A. Leitao & L. Ortiz-Gracia & E. Wagner Asian SWIFT method July 10, 2018

8 /24



SWIFT option valuation formulas

e Truncating the integration range on [a, b] and replacing density f by
the SWIFT approximation,

ko

~ —rT
v(x, to) = e § Cm,k Vim ks
k=ki

where,

b
Vink == / v(y, T)emi(y|x)dy.

@ By employing the Vieta's formula again and interchanging summation
and integration operations, we obtain that

om/2 271 2j—1
Vm7k%2J_12/ v(y, T)Cos< oY 7r(2my—k)> dy.
=t
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SWIFT for Asian options under exponential Lévy models

e Exponential Lévy models: log S(t), follows a Lévy process.

@ The Lévy dynamics have a stationary and i.i.d. increments, fully
described from its characteristic function.

@ But, for arithmetic Asian options, the derivation of the corresponding
characteristic function is rather involved.

o Lets start by defining the return or increment process R;,

R = log <sf§t_)1)> i=1,....N.

@ Based on R;, we define a new process

Yi=Rnt1-i+Zi—1, 1=2,...,N,

where Y1 = Ry and Z; ;= log (1 —i—ey") , Vi
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SWIFT for Asian options under exponential Lévy models

@ Applying the Carverhill-Clewlow-Hodges factorization to Y,
N

LSy = LS

N+1 N+1

i=0
@ Thus, the option price for arithmetic Asian contracts can be now
expressed in terms of the transitional density of the Yy as

Vi to) = T / vy, Ty (y)dy,

where x = log Sp and the call payoff function is given by

= (2 - K>+

@ Again, the probability density function fy, is generally not known,
even for Lévy processes. However, as the process Yy is defined in a
recursive manner, the characteristic function of Y) can be computed
iteratively as well.
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Characteristic function of Yy

@ By the definition of Y}, the initial and recursive characteristic
functions are

P, (&) = Fry (€) = fr(8),
in(é) = fRN+1—i+Zi—1(§) = fRN+1—[(§) ’ fZi—l (f) = fR(&) : fZi_1(€)'
@ By definition, the characteristic function of Z;_; reads

(€)= E [erisloa(tee" )] = /R (14e) 7% h (x)dx.

@ We can again apply the wavelet approximation to fy, , as

A

fZ;‘—l(é‘) ~ /I:{(l + ex)_iE Z Cm,k‘Pm,k(X)dX

k2
=27 Z Cm,k/ (X 4 1) ¥ sinc (2™x — k) dx.
k=k1 R
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Characteristic function of Yy

@ The integral on the right hand side needs to be computed efficiently
to make the method easily implementable, robust and very fast.

@ State-of-the-art methods from the literature rely on solving the
integral by means of quadratures.

Theorem (Theorem 1.3.2 of [3])

Let f be defined on R and let its Fourier transform f be such that for some
positive constant d, |f(w)| = O (e_d|w|) for w — £o0, then as h — 0

/17/Rf(x)5j,h(x)dx — f(jn) =0 (e_%d) |

where S; p(x) = sinc (% — j) for j € Z.

@ Theorem 1 allows us to approximate the integral above provided that
g(x) := (X + 1) satisfies the hypothesis.
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Characteristic function of Yy

o If we consider h = 2%, then it follows from Theorem 1 that

1 —ig
/Rg(x)sinc (2Mx — k) dx =~ hg (kh) = >m <e2Lm + 1) .
@ Thus, fz,—,l can be approximated by
ko K —ig
le.il(f) ~2 2 Z Cm,k (eT'" + 1) .
k=ki
o Finally,
o A o o n k —ig
A(€) = r(©)Fz = (€273 e (e +1)
k=ki
where the density coefficients ¢, x are computed as follows
J—1
2""'/2 2 ~ 2 — 1)mg2m ikm(2j—1)
Cm’kzz.llzére{fyil <U2J)>e 2J }
j=0
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Characteristic function of Yy

o It remains to prove that function g(x) = (eX + 1) satisfies
|g(w)] =0 (e_d|w|) for w — +o0.

@ We have derived an expression for g(w),
Proposition
Let g(x) = (eX + 1)*, where z = —i€ and x,£ € R. Then,

é’(“’):iC)(n—iw)z(:liz(ws»’ weR

n=0

@ It is rather complicated to get a closed-form solution for the modulus
of g(w) from this expression.
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Characteristic function of Yy

@ By employing Wolfram Mathematica 11.2, the infinite sum is written
as

RS
S 2wH¢

+ IMN(iw — 2) (2(10.)—2)2/:_1(1—z,1+iw—z;2+iw_z;_1)_

g(w) [e™™ (B_1 (—iw,1+2) + 2B_1 (1 — iw, z)) +

- 2F (—z,iw—z; 1 +iw — z; —1))} ;

in terms of gamma, I, beta, B, and regularized hypergeometric,
2F1(a, b; c; v).
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Characteristic function of Yy

@ Representing |g(w)|,

— |§(w)|
___{0 ws0
w>0

ol
2w+
0 w2-§
-— gmigwl
216wl +E w<=§

10-16

Figure: Modulus of g(w).
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Payoff coefficients

@ To complete the SWIFT pricing formula, compute the payoff
coefficients, Vi, «,

mG

J—1
_ 2m/2 % [ So
) _2_]7

g (BE )+ (s, b)) - K (% b)],

— 1) and the functions I(J)"k and lé’k are

defined by the following integrals

where X = log (K(g’ijl)

. x2
Ié’k(xl,XQ) ::/ cos (G (2My — k)) dy,

1

. x2
BHGae)i= [ eeos(G 27y~ K)dy.

1
with G = 2’ 17r These integrals are analytically available.
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Numerical results

@ We compare the SWIFT method against a state-of-the-art method,
the well-known COS method, particularly the COS variant for
arithmetic Asian option, called ASCOS method [4].

@ To the best of our knowledge, the ASCOS method provides the best
balance between accuracy and efficiency.

@ Arithmetic Asian call option valuation with varying number of
monitoring dates, N = 12 (monthly), N = 50 (weekly) and N = 250
(daily), and conceptually different underlying Lévy dynamics:
Geometric Brownian motion (GBM) and Normal inverse Gaussian
(NIG).

@ We assess not only the accuracy in the solution but also the
computational performance.

@ All the experiments have been conducted in a computer system with
the following characteristics: CPU Intel Core i7-4720HQ 2.6GHz and
memory of 16GB RAM. The employed software package is Matlab
R2017b.
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Results on GBM

| GBM I [ N=12 N = 50 N =250 |
ASCOS
Error 3.75 x 10°% 834 x 107+ 7.7 x 10 °
Ne =064,ng =100 | 0 (cec) 0.03 0.02 0.01
_ _ Error 837 x 107  7.43x10°° 3.82x10°
Ne = 128, ng = 200 Time (sec.) 0.03 0.02 0.02
Error = 533 x 10°7  1.58 x 10~/
Ne = 256, ng = 400 Time (sec.) 0.16 0.12 0.11
Error = = 3.04 x 1078
Ne = 512, ng = 800 Time (sec.) 1.96 1.80 1.85
_ _ Error = = —
Ne = 1024, nq =1600 | ;0 (cec ) 13.99 13.99 14.25
SWIFT
. Error 270 x 10°% 127 x 1072  3.82x 10~ 2
m= Time (sec.) 0.01 0.01 0.03
m_s Error 747%x10°9  078x10°°  4.01 x 103
B Time (sec.) 0.01 0.02 0.06
6 Error = 3.55 x 10° 10 6.96 x 10~
B Time (sec.) 0.02 0.10 0.40
. Error - = 1.21 x 10~ ¢
m= Time (sec.) 0.08 0.34 1.37
—38 Error = = =
m= Time (sec.) 0.33 1.31 5.11

Table: SWIFT vs. ASCOS. Setting: GBM, 5, = 100, r = 0.0367, ¢ = 0.17801,
T =1 and K = 90. The reference values are 11.9049157487 (N = 12),
11.9329382045 (N = 50) and 11.9405631571 (N = 250).
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Results on NIG

| NIG N =12 N =50 N =250 |
ASCOS
Abserror | 7.78 x 1073  1.71x 101 875 x 10~ 2
Ne =64,ng =100 | (cpj ime 0.03 0.03 0.02
B B Abs error | 2.60 X 10~ %  5.80 x 10~ 3 1.49 x 10~ 2
Ne =128,ng =200 | (py time 0.03 0.03 0.03
Abs error = = 1.42 x 104
Ne = 256, ng = 400 CPU time 0.19 0.17 0.15
Abs error = = =
Ne =512, ng =800 | cpy time 1.98 1.96 2.02
Abs error = = =
¢ = 1024, ng = 1600 | (py (ime 14.38 14.22 14.71
SWIFT
4 Abserror | 9.72x 10°2 927 x 102 4.01 x 10~ 2
m= CPU time 0.02 0.02 0.04
m_s Abserror | 5.60 x 10~°  6.92 x 10-7  4.50 x 10—
= CPU time 0.02 0.03 0.08
6 Abserror | 2.13x 10~ %  0.12x 10~ %  9.11 x 10~ 7
= CPU time 0.02 0.12 0.48
_7 Abs error = = =
m= CPU time 0.13 0.47 1.52
_38 Abs error = = —
m= CPU time 0.39 1.46 5.85

Table: SWIFT vs. ASCOS. Setting: NIG, So = 100, r = 0.0367, o = 0.0,

a=6.1882, = —3.8941, § = 0.1622, T =1 and K = 110. The reference

values are 1.0135 (N = 12), 1.0377 (N = 50) and 1.0444 (N = 250).
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Conclusions

A new Fourier inversion-based technique has been proposed in the

framework of discretely monitored Asian options under exponential

Lévy processes.

@ The application of SWIFT to the Asian pricing problem allows to
overcome the main drawbacks attributed to this type of methods.

@ Specially, SWIFT allows to avoid the numerical integration in the

recovery of the characteristic function.

@ SWIFT results in a highly accurate and fast technique, outperforming
the competitors in most of the analysed situations.
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Bonus - Proof expression g(w)

Proposition

Let z € C and (%) = ZEDE2(zmntl) - Thep the series 350 (%) x"
converges to (1 + x)* for all complex x with |x| < 1.

Corollary

Let z € C. Then the series > o (2)x"y?~" converges to (x + y)? for all

complex x,y with |x| < |y|.

Proof.

The proof follows from Proposition by taking into account that

z
z X
(v =(v[z+1])" 0
”
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Bonus - Proof expression g(w)

Proof.

From the definition, we split the integral in two parts

A o .
2@ = [ g = [ eTgdet [T e g,
R —o0 0

and observe that, by Corollary above,

NE

(" +1)7 =

I
o

n: n=0

Replacing expressions and interchanging the integral and the sum, then we obtain,
oo . oo P 0o .
g(w) = Z( ) / e '“Xe™dx + Z( )/ e 1wxelz=mx gy
n=0 =€ =0 1 Jo
Finally, solving the integrals,
> [z 1 [z = 2n—z
g(w):§<n)n—iw+§(n)n+1(w+§ Z()

= \n/ (n—iw)(n+i(w +€))
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