Asian SWIFT method

Efficient wavelet-based valuation of arithmetic Asian options

Álvaro Leitao, Luis Ortiz-Gracia and Emma I. Wagner

CMMSE 2018 - Rota

July 10, 2018

Motivation

- Arithmetic Asian options are still attractive in financial markets, but it numerical treatment is rather challenging.
- The valuation methods relying on Fourier inversion are highly appreciated, particularly for calibration purposes, since they are extremely fast, very accurate and easy to implement.
- Lack of robustness in the existing methods (number of terms in the expansion, numerical quadratures, truncation, etc.).
- The use of wavelets for other option problems (Europeans, early-exercise, etc.) has resulted in significant improvements in this sense.
- In the context of arithmetic Asian options, SWIFT provides extra benefits.

Outline

- Problem formulation
- The SWIFT method
- SWIFT for Asian options
- Mumerical results
- Conclusions

Problem formulation

- In Asian derivatives, the option payoff function relies on some average
 of the underlying values at a prescribed monitoring dates.
- Thus, the final value is less volatile and the option price cheaper.
- Consider N+1 monitoring dates $t_i \in [0, T], i = 0, ..., N$.
- ullet Where T is the maturity and $\Delta t := t_{i+1} t_i, \forall i$ (equal-spaced).
- Assume the initial state of the price process to be known, $S(0) = S_0$.
- Let averaged price be defined as $A_N := \frac{1}{N+1} \sum_{i=0}^{N} S(t_i)$, the payoff of the *European-style* Asian call option is

$$v(S,T)=(A_N-K)^+.$$

The risk-neutral option valuation formula,

$$v(x,t) = e^{-r(T-t)} \mathbb{E}\left[v(y,T)|x\right] = e^{-r(T-t)} \int_{\mathbb{R}} v(y,T) f(y|x) dy,$$

with r the risk-free rate, T the maturity, f(y|x) the transitional density, typically unknown, and v(y, T) the payoff function.

- A structure for wavelets in $L^2(\mathbb{R})$ is called a *multi-resolution analysis*.
- We start with a family of closed nested subspaces in $L^2(\mathbb{R})$,

$$\ldots \subset \mathcal{V}_{-1} \subset \mathcal{V}_0 \subset \mathcal{V}_1 \subset \ldots, \quad \bigcap_{m \in \mathbb{Z}} \mathcal{V}_m = \{0\} \,, \quad \overline{\bigcup_{m \in \mathbb{Z}} \mathcal{V}_m} = L^2(\mathbb{R}),$$

where

$$f(x) \in \mathcal{V}_m \iff f(2x) \in \mathcal{V}_{m+1}.$$

- Then, it exists a function $\varphi \in \mathcal{V}_0$ generating an orthonormal basis, denoted by $\{\varphi_{m,k}\}_{k\in\mathbb{Z}}$, for each \mathcal{V}_m , $\varphi_{m,k}(x)=2^{m/2}\varphi(2^mx-k)$.
- ullet The function φ is called the *scaling function* or *father wavelet*.
- For any $f \in L^2(\mathbb{R})$, a projection map of $L^2(\mathbb{R})$ onto \mathcal{V}_m , denoted by $\mathcal{P}_m : L^2(\mathbb{R}) \to \mathcal{V}_m$, is defined by means of

$$\mathcal{P}_m f(x) = \sum_{k \in \mathbb{Z}} c_{m,k} \varphi_{m,k}(x), \quad \text{with} \quad c_{m,k} = \langle f, \varphi_{m,k} \rangle.$$

• In this work, we employ Shannon wavelets. A set of Shannon scaling functions $\varphi_{m,k}$ in the subspace \mathcal{V}_m is defined as,

$$\varphi_{m,k}(x) = 2^{m/2} \frac{\sin(\pi(2^m x - k))}{\pi(2^m x - k)} = 2^{m/2} \varphi(2^m x - k), \quad k \in \mathbb{Z},$$

where $\varphi(z) = \operatorname{sinc}(z)$, with sinc the cardinal sine function.

- Given a function $f \in L^2(\mathbb{R})$, we will consider its expansion in terms of Shannon scaling functions at the level of resolution m.
- Our aim is to recover the coefficients $c_{m,k}$ of this approximation from the Fourier transform of the function f, denoted by \hat{f} , defined as

$$\hat{f}(\xi) = \int_{\mathbb{R}} e^{-i\xi x} f(x) dx,$$

where i is the imaginary unit.

• Following wavelets theory, a function $f \in L^2(\mathbb{R})$ can be approximated at the level of resolution m by,

$$f(x) \approx \mathcal{P}_m f(x) = \sum_{k \in \mathbb{Z}} c_{m,k} \varphi_{m,k}(x),$$

where $\mathcal{P}_m f$ converges to f in $L^2(\mathbb{R})$, i.e. $||f - \mathcal{P}_m f||_2 \to 0$, when $m \to +\infty$.

• The infinite series is well-approximated (see Lemma 1 of [2]) by a finite summation,

$$\mathcal{P}_m f(x) \approx f_m(x) := \sum_{k=k_1}^{k_2} c_{m,k} \varphi_{m,k}(x),$$

for certain accurately chosen values k_1 and k_2 .

• Computation of the coefficients $c_{m,k}$: by definition,

$$c_{m,k} = \langle f, \varphi_{m,k} \rangle = \int_{\mathbb{R}} f(x) \overline{\varphi}_{m,k}(x) dx = 2^{m/2} \int_{\mathbb{R}} f(x) \varphi(2^m x - k) dx.$$

• Using the classical Vieta's formula truncated with 2^{J-1} terms, the cosine product-to-sum identity and the definition of the characteristic function, the coefficients, $c_{m,k}$, can be approximated by

$$c_{m,k} pprox rac{2^{m/2}}{2^{J-1}} \sum_{j=1}^{2^{J-1}} \Re \left[\hat{f} \left(rac{(2j-1)\pi 2^m}{2^J}
ight) \mathrm{e}^{rac{\mathrm{i} k\pi (2j-1)}{2^J}}
ight].$$

ullet Putting everything together gives the following approximation of f

$$f(x) \approx \sum_{k=k_1}^{k_2} c_{m,k} \varphi_{m,k}(x).$$

8 / 24

SWIFT option valuation formulas

• Truncating the integration range on [a, b] and replacing density f by the SWIFT approximation,

$$v(x, t_0) \approx e^{-rT} \sum_{k=k_1}^{k_2} c_{m,k} V_{m,k},$$

where,

$$V_{m,k} := \int_a^b v(y,T) \varphi_{m,k}(y|x) dy.$$

 By employing the Vieta's formula again and interchanging summation and integration operations, we obtain that

$$V_{m,k} \approx \frac{2^{m/2}}{2^{J-1}} \sum_{i=1}^{2^{J-1}} \int_{a}^{b} v(y,T) \cos\left(\frac{2j-1}{2^{J}}\pi (2^{m}y-k)\right) dy.$$

SWIFT for Asian options under exponential Lévy models

- Exponential Lévy models: $\log S(t)$, follows a Lévy process.
- The Lévy dynamics have a stationary and i.i.d. increments, fully described from its characteristic function.
- But, for arithmetic Asian options, the derivation of the corresponding characteristic function is rather involved.
- Lets start by defining the return or increment process R_i ,

$$R_i := \log \left(\frac{S(t_i)}{S(t_{i-1})} \right) \quad i = 1, \dots, N.$$

• Based on R_i , we define a new process

$$Y_i := R_{N+1-i} + Z_{i-1}, \quad i = 2, ..., N,$$

where $Y_1 = R_N$ and $Z_i := \log\left(1 + \mathrm{e}^{Y_i}\right), \forall i.$

SWIFT for Asian options under exponential Lévy models

• Applying the Carverhill-Clewlow-Hodges factorization to Y_i ,

$$\frac{1}{N+1}\sum_{i=0}^{N}S(t_i)=\frac{(1+e^{Y_N})S_0}{N+1}.$$

• Thus, the option price for arithmetic Asian contracts can be now expressed in terms of the transitional density of the Y_N as

$$v(x, t_0) = e^{-rT} \int_{\mathbb{R}} v(y, T) f_{Y_N}(y) dy,$$

where $x = \log S_0$ and the call payoff function is given by

$$v(y,T) = \left(\frac{S_0(1+e^y)}{N+1} - K\right)^+$$

• Again, the probability density function f_{Y_N} is generally not known, even for Lévy processes. However, as the process Y_N is defined in a recursive manner, the characteristic function of Y_N can be computed iteratively as well.

 By the definition of Y_i, the initial and recursive characteristic functions are

$$\hat{f}_{Y_1}(\xi) = \hat{f}_{R_N}(\xi) = \hat{f}_R(\xi),
\hat{f}_{Y_i}(\xi) = \hat{f}_{R_{N+1-i}+Z_{i-1}}(\xi) = \hat{f}_{R_{N+1-i}}(\xi) \cdot \hat{f}_{Z_{i-1}}(\xi) = \hat{f}_R(\xi) \cdot \hat{f}_{Z_{i-1}}(\xi).$$

ullet By definition, the characteristic function of Z_{i-1} reads

$$\hat{f}_{Z_{i-1}}(\xi) := \mathbb{E}\left[\mathrm{e}^{-\mathrm{i}\xi\log\left(1+\mathrm{e}^{Y_{i-1}}\right)}\right] = \int_{\mathbb{R}} (1+\mathrm{e}^{x})^{-\mathrm{i}\xi} f_{Y_{i-1}}(x) \mathrm{d}x.$$

ullet We can again apply the wavelet approximation to $f_{Y_{i-1}}$ as

$$egin{aligned} \hat{f}_{Z_{i-1}}(\xi) &pprox \int_{\mathbb{R}} \left(1 + \mathrm{e}^{x}
ight)^{-\mathrm{i}\xi} \sum_{k=k_{1}}^{k_{2}} c_{m,k} arphi_{m,k}(x) \mathrm{d}x \ &= 2^{\frac{m}{2}} \sum_{k=k_{1}}^{k_{2}} c_{m,k} \int_{\mathbb{R}} \left(\mathrm{e}^{x} + 1\right)^{-\mathrm{i}\xi} \mathrm{sinc}\left(2^{m}x - k\right) \mathrm{d}x. \end{aligned}$$

- The integral on the right hand side needs to be computed efficiently to make the method easily implementable, robust and very fast.
- State-of-the-art methods from the literature rely on solving the integral by means of quadratures.

Theorem (Theorem 1.3.2 of [3])

Let f be defined on $\mathbb R$ and let its Fourier transform $\hat f$ be such that for some positive constant d, $|\hat f(\omega)| = \mathcal O\left(\mathrm e^{-d|\omega|}\right)$ for $\omega \to \pm \infty$, then as $h \to 0$

$$\frac{1}{h}\int_{\mathbb{R}}f(x)S_{j,h}(x)\mathrm{d}x-f(jh)=\mathcal{O}\left(\mathrm{e}^{-\frac{\pi d}{h}}\right),$$

where $S_{j,h}(x) = \operatorname{sinc}\left(\frac{x}{h} - j\right)$ for $j \in \mathbb{Z}$.

• Theorem 1 allows us to approximate the integral above provided that $g(x) := (e^x + 1)^{-i\xi}$ satisfies the hypothesis.

40 + 40 + 43 + 43

• If we consider $h = \frac{1}{2^m}$, then it follows from Theorem 1 that

$$\int_{\mathbb{R}} g(x) \operatorname{sinc} \left(2^m x - k\right) dx \approx hg\left(kh\right) = \frac{1}{2^m} \left(e^{\frac{k}{2^m}} + 1\right)^{-i\xi}.$$

• Thus, $\hat{f}_{Z_{i-1}}$ can be approximated by

$$\hat{f}_{Z_{i-1}}(\xi) \approx 2^{-\frac{m}{2}} \sum_{k=k_1}^{k_2} c_{m,k} \left(e^{\frac{k}{2^m}} + 1 \right)^{-i\xi}.$$

Finally,

$$\hat{f}_{Y_i}(\xi) = \hat{f}_R(\xi)\hat{f}_{Z_{i-1}} \approx \hat{f}_R(\xi)2^{-\frac{m}{2}} \sum_{k=k_1}^{k_2} c_{m,k} \left(e^{\frac{k}{2^m}} + 1\right)^{-i\xi},$$

where the density coefficients $c_{m,k}$ are computed as follows

$$c_{m,k} pprox rac{2^{m/2}}{2^{J-1}} \sum_{j=0}^{2^{J-1}} \Re \left\{ \hat{f}_{Y_{i-1}} \left(rac{(2j-1)\pi 2^m}{2^J} \right) e^{rac{\mathrm{i} k\pi (2j-1)}{2^J}} \right\}.$$

- It remains to prove that function $g(x) = (e^x + 1)^{-i\xi}$ satisfies $|\hat{g}(\omega)| = \mathcal{O}\left(e^{-d|\omega|}\right)$ for $\omega \to \pm \infty$.
- We have derived an expression for $\hat{g}(w)$,

Proposition

Let $g(x)=(\mathrm{e}^x+1)^z$, where $z=-\mathrm{i}\xi$ and $x,\xi\in\mathbb{R}$. Then,

$$\hat{g}(\omega) = \sum_{n=0}^{\infty} {z \choose n} \frac{2n-z}{(n-\mathrm{i}\omega)(n+\mathrm{i}(\omega+\xi))}, \quad \omega \in \mathbb{R}.$$

• It is rather complicated to get a closed-form solution for the modulus of $\hat{g}(\omega)$ from this expression.

 By employing Wolfram Mathematica 11.2, the infinite sum is written as

$$\begin{split} \hat{g}(\omega) &= \frac{\xi}{2\omega + \xi} \left[\mathrm{e}^{-\pi\omega} \left(B_{-1} \left(-\mathrm{i}\omega, 1 + z \right) + 2 B_{-1} \left(1 - \mathrm{i}\omega, z \right) \right) + \right. \\ &+ \Gamma \left(\mathrm{i}\omega - z \right) \left(2 (\mathrm{i}\omega - z)_2 \tilde{F}_1 \left(1 - z, 1 + \mathrm{i}\omega - z; 2 + \mathrm{i}\omega - z; -1 \right) - \right. \\ &- \left. {}_2 \tilde{F}_1 \left(-z, \mathrm{i}\omega - z; 1 + \mathrm{i}\omega - z; -1 \right) \right) \right], \end{split}$$

in terms of gamma, Γ , beta, B, and regularized hypergeometric, ${}_{2}\tilde{F}_{1}(a,b;c;\nu)$.

• Representing $|\hat{g}(\omega)|$,

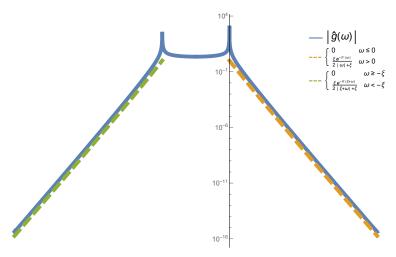


Figure: Modulus of $\hat{g}(\omega)$.

Payoff coefficients

 To complete the SWIFT pricing formula, compute the payoff coefficients, V_{m,k},

$$V_{m,k} = \frac{2^{m/2}}{2^{J-1}} \sum_{j=1}^{2^{J-1}} \left[\frac{S_0}{N+1} \left(I_2^{j,k}(\tilde{x},b) + I_0^{j,k}(\tilde{x},b) \right) - K I_0^{j,k}(\tilde{x},b) \right],$$

where $\tilde{x} = \log\left(\frac{K(N+1)}{S_0} - 1\right)$ and the functions $I_0^{j,k}$ and $I_2^{j,k}$ are defined by the following integrals

$$\begin{split} I_0^{j,k}(x_1,x_2) &:= \int_{x_1}^{x_2} \cos \left(C_j \left(2^m y - k \right) \right) \mathrm{d}y, \ I_2^{j,k}(x_1,x_2) &:= \int_{x_1}^{x_2} \mathrm{e}^y \cos \left(C_j \left(2^m y - k \right) \right) \mathrm{d}y, \end{split}$$

with $C_j = \frac{2j-1}{2^J}\pi$. These integrals are analytically available.

Numerical results

- We compare the SWIFT method against a state-of-the-art method, the well-known COS method, particularly the COS variant for arithmetic Asian option, called ASCOS method [4].
- To the best of our knowledge, the ASCOS method provides the best balance between accuracy and efficiency.
- Arithmetic Asian call option valuation with varying number of monitoring dates, N = 12 (monthly), N = 50 (weekly) and N = 250 (daily), and conceptually different underlying Lévy dynamics: Geometric Brownian motion (GBM) and Normal inverse Gaussian (NIG).
- We assess not only the accuracy in the solution but also the computational performance.
- All the experiments have been conducted in a computer system with the following characteristics: CPU Intel Core i7-4720HQ 2.6GHz and memory of 16GB RAM. The employed software package is Matlab R2017b.

Results on GBM

GBM		N = 12	N FO	A/ 050
GBIVI		N = 12	N = 50	N = 250
			ASCOS	
$N_c = 64, n_q = 100$	Error	3.75×10^{-4}	8.34×10^{-4}	7.17×10^{-3}
	Time (sec.)	0.03	0.02	0.01
$N_c = 128, n_q = 200$	Error	8.37×10^{-7}	7.43×10^{-6}	3.82×10^{-5}
	Time (sec.)	0.03	0.02	0.02
$N_c = 256, n_q = 400$	Error	=	5.33×10^{-7}	1.58×10^{-7}
	Time (sec.)	0.16	0.12	0.11
$N_c = 512, n_q = 800$	Error	=	=	3.04×10^{-8}
	Time (sec.)	1.96	1.80	1.85
$N_c = 1024, n_q = 1600$	Error	=	=	=
	Time (sec.)	13.99	13.99	14.25
			SWIFT	
m = 4	Error	2.70×10^{-4}	1.27×10^{-2}	3.82×10^{-2}
	Time (sec.)	0.01	0.01	0.03
m = 5	Error	7.47×10^{-9}	9.78×10^{-5}	4.01×10^{-3}
	Time (sec.)	0.01	0.02	0.06
<i>m</i> = 6	Error	=	3.55×10^{-10}	6.96×10^{-4}
	Time (sec.)	0.02	0.10	0.40
m = 7	Error	=	=	1.21×10^{-8}
	Time (sec.)	0.08	0.34	1.37
m = 8	Error	=	=	=
	Time (sec.)	0.33	1.31	5.11

Table: SWIFT vs. ASCOS. Setting: **GBM**, $S_0 = 100$, r = 0.0367, $\sigma = 0.17801$, T = 1 and K = 90. The reference values are 11.9049157487 (N = 12), 11.9329382045 (N = 50) and 11.9405631571 (N = 250).

Results on NIG

NIIC		A/ 10	N/ F0	A/ 050
NIG		N = 12	N = 50	N = 250
			ASCOS	
$N_c = 64, n_q = 100$	Abs error CPU time	7.78×10^{-3} 0.03	1.71×10^{-1} 0.03	8.75 × 10 ⁻² 0.02
$N_c = 128, n_q = 200$	Abs error CPU time	2.60×10^{-4} 0.03	5.89×10^{-3} 0.03	1.49×10^{-2} 0.03
$N_c = 256, n_q = 400$	Abs error CPU time	= 0.19	= 0.17	1.42×10^{-4} 0.15
$N_c = 512, n_q = 800$	Abs error CPU time	= 1.98	= 1.96	= 2.02
$N_c = 1024, n_q = 1600$	Abs error CPU time	= 14.38	= 14.22	= 14.71
			SWIFT	
m = 4	Abs error CPU time	9.72×10^{-2} 0.02	9.27×10^{-2} 0.02	4.01 × 10 ⁻² 0.04
m = 5	Abs error CPU time	5.69×10^{-3} 0.02	6.92×10^{-4} 0.03	4.50×10^{-3} 0.08
m = 6	Abs error CPU time	2.13×10^{-4} 0.02	9.12×10^{-4} 0.12	9.11×10^{-4} 0.48
m = 7	Abs error CPU time	= 0.13	= 0.47	= 1.52
m = 8	Abs error CPU time	= 0.39	= 1.46	= 5.85

Table: SWIFT vs. ASCOS. Setting: **NIG**, $S_0 = 100$, r = 0.0367, $\sigma = 0.0$, $\alpha = 6.1882$, $\beta = -3.8941$, $\delta = 0.1622$, T = 1 and K = 110. The reference values are 1.0135 (N = 12), 1.0377 (N = 50) and 1.0444 (N = 250).

Conclusions

- A new Fourier inversion-based technique has been proposed in the framework of discretely monitored Asian options under exponential Lévy processes.
- The application of SWIFT to the Asian pricing problem allows to overcome the main drawbacks attributed to this type of methods.
- Specially, SWIFT allows to avoid the numerical integration in the recovery of the characteristic function.
- SWIFT results in a highly accurate and fast technique, outperforming the competitors in most of the analysed situations.

References

Álvaro Leitao, Luis Ortiz-Gracia, and Emma I. Wagner.

SWIFT valuation of discretely monitored arithmetic Asian options, 2018.

Available at SSRN: https://ssrn.com/abstract=3124902.

Luis Ortiz-Gracia and Cornelis W. Oosterlee.

A highly efficient Shannon wavelet inverse Fourier technique for pricing European options.

SIAM Journal on Scientific Computing, 38(1):118–143, 2016.

Frank Stenger.

Handbook of Sinc numerical methods.

CRC Press, Inc., Boca Raton, FL, USA, 2010.

Bowen Zhang and Cornelis W. Oosterlee.

Efficient pricing of European-style Asian options under exponential Lévy processes based on Fourier cosine expansions.

SIAM Journal on Financial Mathematics, 4(1):399-426 2013.

Acknowledgements & Questions

Thanks to support from MDM-2014-0445

More: leitao@ub.edu and alvaroleitao.github.io

Thank you for your attention

Bonus - Proof expression $\hat{g}(\omega)$

Proposition

Let $z \in \mathbb{C}$ and $\binom{z}{n} = \frac{z(z-1)(z-2)\cdots(z-n+1)}{n!}$. Then the series $\sum_{n=0}^{\infty} \binom{z}{n} x^n$ converges to $(1+x)^z$ for all complex x with |x| < 1.

Corollary

Let $z \in \mathbb{C}$. Then the series $\sum_{n=0}^{\infty} {z \choose n} x^n y^{z-n}$ converges to $(x+y)^z$ for all complex x, y with |x| < |y|.

Proof.

The proof follows from Proposition by taking into account that

$$(x+y)^z = \left(y\left[\frac{x}{y}+1\right]\right)^z.$$

Bonus - Proof expression $\hat{g}(\omega)$

Proof.

From the definition, we split the integral in two parts

$$\hat{g}(\omega) = \int_{\mathbb{R}} e^{-i\omega x} g(x) dx = \int_{-\infty}^{0} e^{-i\omega x} g(x) dx + \int_{0}^{\infty} e^{-i\omega x} g(x) dx,$$

and observe that, by Corollary above,

$$(e^{x}+1)^{z} = \sum_{n=0}^{\infty} {z \choose n} e^{nx}, \text{ for } x < 0, \text{ and } (e^{x}+1)^{z} = \sum_{n=0}^{\infty} {z \choose n} e^{(z-n)x}, \text{ for } x > 0.$$

Replacing expressions and interchanging the integral and the sum, then we obtain,

$$\hat{g}(\omega) = \sum_{n=0}^{\infty} {z \choose n} \int_{-\infty}^{0} e^{-i\omega x} e^{nx} dx + \sum_{n=0}^{\infty} {z \choose n} \int_{0}^{\infty} e^{-i\omega x} e^{(z-n)x} dx.$$

Finally, solving the integrals,

$$\hat{g}(\omega) = \sum_{n=1}^{\infty} {z \choose n} \frac{1}{n - i\omega} + \sum_{n=1}^{\infty} {z \choose n} \frac{1}{n + i(\omega + \xi)} = \sum_{n=1}^{\infty} {z \choose n} \frac{2n - z}{(n - i\omega)(n + i(\omega + \xi))}.$$