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Motivation

Classical compartmental SEIR-like models are too simplistic.

Particular COVID-19 characteristics: undetected, hospitalized,
deaths, etc.

Require a COVID-19 ad-hoc model: θ-SEIHRD model.

Deterministic version: rigid and limited information.

Uncertainty may influence the compartments dynamics.

Behavioural effects, public interventions, seasonal patterns,
environmental factors, etc. are factors with a random
component.

How to account for it? Stochastic extension!
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Introduction
From deterministic to stochastic

The compartmental models are formulated in a deterministic
fashion: Ordinary Differential Equations (ODEs).

There are two common approaches to include stochasticity
into a deterministic model:

Continuous Time Markov Chain (CTMC).
Stochastic Differential Equations (SDEs).

The stochastic models allow to capture many kinds of
circumstances including uncertainty.

The solution of the stochastic model is a set of stochastic
processes, containing much more information than the
deterministic analogous.

Statistical analyses can be performed (expectations, quantiles
or worst case scenarios).
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Introduction
From deterministic to stochastic

We follow the SDE approach incorporating a Brownian motion
to the ODEs.

Two common ways of addressing this kind of stochastic
extension:

Adding arbitrary random noise.
Perturbing one (o more) of the existing model parameters.

We choose the second alternative for interpretability
purposes.

In practice, the uncertainty will have impact on a particular
model component, typically represented by a model
parameter.

A randomly perturbed parameter can be reasonably explained
in terms of the variability produced by the source of the
considered uncertainty.
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Original model
Simplified version

We consider the (simplified) θ-SEIHRD model from [2].

Consisting in 9 equations, 6 coupled,
dS
dt

(t) = −
S(t)
N

(
mE (t)βE E(t) + mI(t)βI I(t) + mIu (t)βIu (θ(t))Iu(t)

)
−

S(t)
N

(
mHR (t)βHR (t)HR(t) + mHD (t)βHD (t)HD(t)

)
,

dE
dt

(t) =
S(t)
N

(
mE (t)βE E(t) + mI(t)βI I(t) + mIu (t)βIu (θ(t))Iu(t)

)
+

S(t)
N

(
mHR (t)βHR (t)HR(t) + mHD (t)βHD (t)HD(t)

)
− γE E(t),

dI
dt

(t) = γE E(t)− γI(t)I(t),

dIu
dt

(t) = (1− θ(t))γI(t)I(t)− γIu (t)Iu(t),

dHR

dt
(t) = θ(t)

(
1−

ω(t)
θ(t)

)
γI(t)I(t)− γHR (t)HR(t),

dHD

dt
(t) = ω(t)γI(t)I(t)− γHD (t)HD(t),
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Simplified version

and 3 uncoupled equations,

dRd

dt
(t) = γHR (t)HR(t),

dRu

dt
(t) = γIu (t)Iu(t),

dD
dt

(t) = γHD (t)HD(t).

whose solution can be obtained by

Rd (t) = Rd (t0) +

∫ t

t0
γHR (s)HR(s)ds,

Ru(t) = Ru(t0) +

∫ t

t0
γIu (s)Iu(s)ds,

D(t) = D(t0) +

∫ t

t0
γHD (s)HD(s)ds,
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Original model
Compartments diagram

Figure: The θ-SEIHRD model diagram.
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Original model
Simplified version - Parameters

Efficiency of the control measures
mE ,mI ,mIu ,mHR ,mHD ∈ [0,1](%). Here, only one control
measure is assumed, implemented at date λ1,

mX (t) =

{
1, if t ∈ [0, λ1],

exp (−κ1(t − λ1)) , if t ∈ [λ1,T ],

with the parameter κ1 ∈ [0,0.2].

The fatality rate ω(t) ∈ [ω, ω] ⊂ [0,1],

ω(t) = mI(t)ω + (1−mI(t))ω,

with ω and ω being the fatality rate limits with and without
control measures, ω = ω + δω.
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Original model
Simplified version - Parameters

The fraction of detected individuals, θ ∈ [ω,1],

θ(t) =


θ, if t ∈ [t , λ1],

linear continuous, if t ∈ [λ1, λ2],

θ, if t ∈ [λ2,T ],

with θ, θ, λ1, λ2 inferred from the data.

Compartment transition rates γE , γI , γIu , γHR , γHD ∈ (0,+∞).
Given the days in each compartment, dE , dI , dIu , dHR and dHD ,
with dIu = dHR and dHD = dHR + δR , δR > 0,

γI =
1

dE
, γIu (t) = γHR (t) =

1
dIu + g(t)

γI(t) =
1

dI − g(t)
, γHD (t) =

1
dIu + g(t) + δR

,

where g(t) = dg(1−mI(t)).
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Original model
Simplified version - Parameters

The disease contact rates βE , βI , βIu , βHR , βHD ∈ R+. The
parameter βI is calibrated. More βE = CEβI ,
βHR = βHD = CH(t)βI and

βIu (t) = β
I

+
βI − βI

1− ω(t)
(1− θ(t)),

where β
I

= CuβI , with CE , CH(t) and Cu ∈ [0,1]. Parameters
CE and Cu are obtained calibration, while

CH(t) =
αH

(
βI
γI (t) + βE

γE (t) + (1− θ(t))
βIu (t)
γIu (t)

)
(1− αH)βIθ(t)

((
1− ω(t)

θ(t)

)
1

γHR (t) + ω(t)
θ(t)

1
γHR (t)

)
with αH being the percentage of healthcare workers infected.
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Stochastic extension
Rewriting the simplified model

Our aim is to introduce stochasticity to the simplified
θ-SEIHRD model.

We add randomness on the disease contact rates, β’s.

Writing them in terms of βI ,

βE = βIAE , βIu = βIAIu , βHR = βIAHR , βHD = βIAHD ,

where

AE = CE ,

AIu (t) = Cu +
(1− Cu)(1− θ(t))

1− ω(t)
,

AHR (t) = AHD (t) =

αH

(
1

γI (t) + AE
γE

+ (1− θ(t))
AIu (t)
γIu (t)

)
(1− αH )θ(t)

(
(1− ω(t)

θ(t) ) 1
γHR

(t) + ω(t)
θ(t)

1
γHD

(t)

) .

Álvaro Leitao and Carlos Vázquez A stochastic θ-SEIHRD model December 18, 2020 12/35



Introduction

A stochastic
compartmental
model for the
COVID-19
Original model

Stochastic extension

Numerical
solution of the
stochastic
θ-SEIHRD model

Numerical and
statistical
analysis

Conclusions

Stochastic extension
Rewriting the simplified model

The θ-SEIHRD model can be rewritten as,

dS
dt

(t) = −βI
S(t)M(t)

N
,

dE
dt

(t) = βI
S(t)M(t)

N
− γE E(t),

dI
dt

(t) = γE E(t)− γI I(t),

dIu
dt

(t) = (1− θ(t))γI I(t)− γIu Iu(t),

dHR

dt
(t) = θ(t)

(
1−

ω(t)
θ(t)

)
γI I(t)− γHR HR(t),

dHD

dt
(t) = ω(t)γI I(t)− γHD HD(t),

where
M(t) = mE AE E(t) + mI I(t) + mIu AIu Iu(t)

+ mHR AHR HR(t) + mHD AHD HD(t).
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Stochastic extension
Adding stochasticity

Replace the constant parameter βI by a random walk.

The disease contact rate in compartment I follows a newly
introduced stochastic process, β̃I(t).

We choose the well-known CIR process [1].

The main advantage of the CIR process: it ensures the
spacial states to be non-negative.

Further, the CIR process is a mean-reverting process.

The dynamics of β̃I read

dβ̃I(t) = νβI (µβI − β̃I(t))dt + σβI

√
β̃(t)dW (t)

where νβI is the mean reverting speed, µβI is the long-term
average, σβI is the volatility and dW (t) is a Brownian motion
increment.
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Stochastic extension
The stochastic θ-SEIHRD model

The system of SDEs governing the stochastic θ-SEIHRD
model is given by,

dS(t) = β̃I(t)
S(t)M(t)

N
dt

dE(t) =

(
β̃I(t)

S(t)M(t)
N

− γE E(t)
)

dt

dI(t) = (γE E(t)− γI I(t)) dt ,

dIu(t) =
(
(1− θ(t))γI I(t)− γIu Iu(t)

)
dt ,

dHR(t) =

(
θ(t)

(
1−

ω(t)
θ(t)

)
γI I(t)− γHR HR(t)

)
dt ,

dHD(t) =
(
ω(t)γI I(t)− γHD HD(t)

)
dt ,

dRd (t) = γHR (t)HR(t)dt ,

dRu(t) = γIu (t)Iu(t)dt ,

dD(t) = γHD (t)HD(t)dt ,

dβ̃I(t) = νβI (µβI − β̃I(t))dt + σβI

√
β̃I(t)dW (t).

with M(t) as defined before.
Álvaro Leitao and Carlos Vázquez A stochastic θ-SEIHRD model December 18, 2020 15/35



Introduction

A stochastic
compartmental
model for the
COVID-19
Original model

Stochastic extension

Numerical
solution of the
stochastic
θ-SEIHRD model

Numerical and
statistical
analysis

Conclusions

Stochastic extension
The stochastic θ-SEIHRD model

Although only one source of randomness is introduced, the
solution of the whole system becomes a set of stochastic
processes.

The remaining equations depend on the first equations for S
and E , which present a dependence on β̃I .

The CIR process is widely employed to simulate the evolution
of interest rates in quantitative finance.

In some sense, the interest rates in finance and the disease
contact rates in epidemiology present a rather similar
behaviour: positiveness, controlled variability and long-term
stability.
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The stochastic θ-SEIHRD model
Numerical solution

For a set of constant initial data
S(0), E(0), I(0), Iu(0), HR(0), HD(0), Rd (0), Ru(0), D(0) and
β̃I(0), the system of SDEs has a unique strong solution.

As the system of SDEs is nonlinear, it is not possible to obtain
a closed-form expression for the solution.

The use of numerical methods becomes mandatory. We
adopt the following strategy:

1 Perform a simulation of the dynamics of β̃I(t), in
accordance with the CIR process.

2 Solve the resulting ODE system for each path of β̃I(t).

We obtain a set of random walks for each stochastic process
representing a model variable.
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The stochastic θ-SEIHRD model
Numerical solution

The CIR process is a well-studied dynamics often employed in
computational finance.

The underlying distribution is known analytically, relying on
the non-central chi-squared distribution.

Given two time points, s and t , s < t , the conditional
distribution of β̃I reads

β̃I(t)|β̃I(s) ∼ c(t , s) · χ2

(
d ,

e−νβI (t−s)

c(t , s)
β̃I(s)

)
,

where

c(t , s) =
σ2
βI

4µβI

(
1− e−νβI (t−s)

)
, d =

4νβIµβI

σ2
βI

,

and χ2(a,b) is the non-central chi-squared distribution with a
degrees of freedom and non-centrality parameter b.
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The stochastic θ-SEIHRD model
Numerical solution

We can then define an exact simulation scheme, which can
be used to obtain realizations of β̃I .

Given a set of m + 1 time points, {ti}m
0 , where the solution will

be computed, we have, for i = 0, . . . ,m − 1,

c(ti+1, ti ) =
σ2
βI

4µβI

(
1− e−νβI

(ti+1−ti )
)
,

β̃I(ti+1) = c(ti+1, ti )χ2

(
d ,

e−νβI
(ti+1−ti )

c(ti+1 − ti )
β̃I(ti )

)

given some initial value β̃I(t0) = β̃I(0).

By employing this scheme, we generate n simulated discrete
sample paths of β̃I .
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The stochastic θ-SEIHRD model
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Figure: Deterministic vs. Stochastic: νβI = 1, µβI = βI and
σβI = 0.1, with n = 215 Monte Carlo simulations (only 8
simulations depicted).
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The stochastic θ-SEIHRD model
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Figure: Deterministic vs. Stochastic: νβI = 1, µβI = βI and
σβI = 0.1, with n = 215 Monte Carlo simulations (only 8
simulations depicted).
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The stochastic θ-SEIHRD model
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Figure: Deterministic vs. Stochastic: νβI = 1, µβI = βI and
σβI = 0.1, with n = 215 Monte Carlo simulations (only 8
simulations depicted).
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Numerical and statistical analysis
Technicalities

Computer system: CPU Intel Core i7-4720HQ 2.6GHz, 16GB
RAM memory and GPU GeForce GTX 970M.

The numerical codes have been implemented in Python.

We consider a equally spaced time grid, i.e. ∆t := ti+1 − ti ,∀i ,
with time step ∆t = 1

6 (around 4 hours).

We numerically solve n ODE systems, one for each path of β̃I .

We employ the explicit Runge-Kutta method of order 5(4),
known as RK45, RKDP.

Outcomes: the mean, the interquartile interval, [Q1,Q3] and
the worst case scenario (WS) at 95% confidence level.
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Numerical and statistical analysis
Coefficients and parameters

Initial state values given by: S(t0) = N − 1, E(t0) = 1 and

I(t0) = Iu(t0) = HR(t0) = HD(t0) = Rd (t0) = Ru(t0) = D(t0) = 0.

Notation Value Description
βI 0.2887 Disease contact rate of a person in compartment I.
CE 0.3643 Reduction factor of the disease contact rate βE w.r.t βI .
Cu 0.4010 Reduction factor of the disease contact rate β

I
w.r.t βI .

δR 7.0000 Difference between days in compartment HR and HD .
δω 0.0206 Difference between ω and ω.
ω 0.0157 Lower bound of the fatality rate.
κ1 0.1082 Efficiency of the control measures.

Table: Parameters obtained by calibration to the data.
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Numerical and statistical analysis
Coefficients and parameters

Notation Value Description
N 1400812636 Total population.
t0 1-12-2019 Initial date.
T 29-3-2020 Final date.
λ1 23-1-2020 Date when travel restrictions were imposed in Wuhan.
λ2 8-2-2020 Inflexion date.
θ 14% Percentage of documented cases at λ1.
θ 65% Percentage of documented cases at λ2.
αH 2.75% Percentage of infection produced by hospitalized people.
dE 5.5 Average days in compartment E .
dI 6.7 Average days in compartment I.
dIu 14 − dI = 7.3 Average days in compartment Iu .
dg 6 Maximum reduction of dI due to the control measures.
Co 14 The period of convalescence.
p(t) 1 Fraction of the infected people hospitalized.

Table: Parameters extracted from the experience and/or
literature.
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Numerical and statistical analysis
Model variables

8th February, 2020 (t = 69)
σβI

= 0 σβI
= 0.1 σβI

= 0.5
Mean Mean [Q1,Q3] WS (95%) Mean [Q1,Q3] WS (95%)

E(t) 2993 3067 [2506, 3519] 4510 5401 [1049, 5415] 18970
I(t) 1340 1376 [1125, 1578] 2017 2419 [476, 2423] 8522
Iu(t) 3854 3945 [3249, 4505] 5724 6811 [1434, 6940] 23728

HR (t) 3252 3328 [2732, 3806] 4854 5799 [1182, 5863] 20340
HD(t) 214 219 [181, 250] 318 377 [80, 386] 1311
Rd (t) 1846 1888 [1559, 2153] 2726 3231 [701, 3317] 11168
Ru(t) 4296 4390 [3656, 4985] 6238 7301 [1738, 7690] 24654
D(t) 131 134 [112, 152] 190 222 [53, 235] 747

29th March, 2020 (t = 119)
σβI

= 0 σβI
= 0.1 σβI

= 0.5
Mean Mean [Q1,Q3] WS (95%) Mean [Q1,Q3] WS (95%)

E(t) 1 1 [1, 1] 2 2 [0, 3] 10
I(t) 0 0 [0, 0] 0 0 [0, 0] 1
Iu(t) 173 177 [146, 203] 259 309 [63, 314] 1075

HR (t) 232 237 [194, 272] 348 416 [83, 420] 1458
HD(t) 30 30 [25, 35] 45 53 [11, 54] 186
Rd (t) 8460 8662 [7118, 9910] 12624 15087 [3101, 15287] 52651
Ru(t) 9969 10198 [8442, 11616] 14681 17386 [3862, 17941] 59616
D(t) 417 426 [353, 486] 614 728 [161, 751] 2502

Table: Stochastic θ-SEIHRD model: νβI = 1, µβI = βI and
n = 215 Monte Carlo simulations. Columns: mean, interquartile
interval ([Q1,Q3]) and worst case scenario (WS).
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Figure: Histogram of I(t). Setting: νβI = 1 and µβI = βI , with
n = 215 Monte Carlo simulations.
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Model outputs

The cumulative number of COVID-19 cases, cm(t), at time t :

cm(t) = HR(t)+HD(t)+Rd (t)+D(t) = cm(t0)+

∫ t

t0
θ(s)γI(s)I(s)ds.

The cumulative number of deaths, at time t : dm(t) = D(t).

The basic reproduction number, R0, and the effective
reproduction number, Re(t), at time t , where R0 = Re(t0),

Re(t) =
Ue(t)

γEγI(t)γHR (t)γHD (t)γIu (t)
S(t)
N

,

with
Ue(t) =

((
(mIuβIu (1− θ)γHR + mHRβHRγIu (θ − ω))γI + mIβIγHRγIu

)
γE

+ mEβEγIγHRγIuγHD + mHDβHDωγEγIγHRγIu .

Hospitalized people, Hos(t), at time t :

Hos(t) = HD(t) + p(t) (HR(t) + Rd (t)− Rd (t − Co)) .
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Maximum number of hospitalized people in the interval [t0, t ]:

MHos(t) = max
τ∈[t0,t]

Hos(τ).

The number of individuals infected by others belonging to
compartments E , Iu and H = HR + HD:

ΓE (t) =

∫ t

t0
mE (s)βEE(s)

S(s)

N
ds,

ΓIu (t) =

∫ t

t0
mIu (s)βIu Iu(s)

S(s)

N
ds,

ΓH(t) =

∫ t

t0
(mHR (s)βHR HR(s) + mHD (s)βHD HD(s))

S(s)

N
ds,

respectively.
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8th February, 2020 (t = 69)
σβI

= 0 σβI
= 0.1 σβI

= 0.5
Mean Mean [Q1,Q3] WS (95%) Mean [Q1,Q3] WS (95%)

cm(t) 5440 5571 [4586, 6362] 8088 9631 [2026, 9812] 33466
dm(t) 131 134 [112, 152] 190 222 [53, 235] 747
Re(t) 0.33 0.33 [0.31, 0.35] 0.38 0.33 [0.22, 0.41] 0.63
Hos(t) 4040 4134 [3395, 4727] 6026 7197 [1471, 7273] 25262

MHos(t) 4040 4134 [3395, 4727] 6026 7197 [1471, 7273] 25262
ΓE (t) 5012 5126 [4255, 5833] 7337 8625 [1979, 9013] 29414
ΓIu (t) 4550 4646 [3864, 5285] 6640 7600 [1764, 7976] 25755
ΓH (t) 198 202 [168, 230] 288 328 [78, 346] 1106

29th March, 2020 (t = 119)
σβI

= 0 σβI
= 0.1 σβI

= 0.5
Mean Mean [Q1,Q3] WS (95%) Mean [Q1,Q3] WS (95%)

cm(t) 9140 9358 [7691, 10704] 13631 16286 [3358, 16526] 56752
dm(t) 417 426 [353, 486] 614 728 [161, 751] 2502
Re(t) 0.0 0.0 [0.0 , 0.0] 0.0 0.0 [0.0, 0.0] 0.0
Hos(t) 306 314 [257, 360] 459 549 [111, 555] 1927

MHos(t) 4558 4671 [3832, 5347] 6816 8195 [1662, 8258] 28681
ΓE (t) 5259 5379 [4464, 6122] 7705 9070 [2073, 9465] 30925
ΓIu (t) 5388 5504 [4570, 6264] 7886 9082 [2080, 9479] 30911
ΓH (t) 229 234 [195, 266] 334 384 [89, 402] 1298

Table: Stochastic θ-SEIHRD model: νβI = 1, µβI = βI and
n = 215 Monte Carlo simulations. Columns: mean, interquartile
interval ([Q1,Q3]) and worst case scenario (WS).
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Figure: Epidemic curves: mean, IQ interval and WS. Setting:
νβI = 1, µβI = βI and σβI = 0.1, with n = 215.
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Figure: Epidemic curves: mean, IQ interval and WS. Setting:
νβI = 1, µβI = βI and σβI = 0.5, with n = 215.

Álvaro Leitao and Carlos Vázquez A stochastic θ-SEIHRD model December 18, 2020 32/35



Introduction

A stochastic
compartmental
model for the
COVID-19
Original model

Stochastic extension

Numerical
solution of the
stochastic
θ-SEIHRD model

Numerical and
statistical
analysis

Conclusions

Conclusions
Discussion and and future research

We have extended an ad-hoc model by incorporating
randomness to relevant coefficients (disease contact rates).

We have shown the importance of considering the uncertainty.

The presented modelling approach is more complete since it
allows to compute confidence intervals and worst case
scenarios.

The information provided by the worst case scenarios can be
useful to develop more conservative policies in the actions
against the COVID-19 spread.

A natural extension would be to consider independent contact
rates, using different stochastic processes to characterize
their dynamics.

In this more general setting, a certain number of different
(possibly correlated) Brownian motion processes would come
into place.
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