

A stochastic θ -SEIHRD model Adding randomness to the COVID-19 spread

Álvaro Leitao and Carlos Vázquez

alvaro.leitao@udc.gal https://alvaroleitao.github.io/

December 18, 2020

www.udc.gal

Motivation

- Classical compartmental SEIR-like models are too simplistic.
- Particular COVID-19 characteristics: undetected, hospitalized, deaths, etc.
- Require a COVID-19 *ad-hoc* model: *θ*-SEIHRD model.
- Deterministic version: rigid and limited information.
- Uncertainty may influence the compartments dynamics.
- Behavioural effects, public interventions, seasonal patterns, environmental factors, etc. are factors with a random component.
- How to account for it? Stochastic extension!

Outline

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

Introduction

A stochastic compartmental model for the COVID-19

3 Numerical solution of the stochastic θ -SEIHRD model

- Original model
- Stochastic extension

and

4 Numerical and statistical analysis

ntroduction

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

- The compartmental models are formulated in a deterministic fashion: Ordinary Differential Equations (ODEs).
- There are two common approaches to include stochasticity into a deterministic model:
 - Continuous Time Markov Chain (CTMC).
 - Stochastic Differential Equations (SDEs).
- The stochastic models allow to capture many kinds of circumstances including uncertainty.
- The solution of the stochastic model is a set of stochastic processes, containing much more information than the deterministic analogous.
- Statistical analyses can be performed (expectations, quantiles or worst case scenarios).

Introduction

From deterministic to stochastic

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extensior

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

- We follow the SDE approach incorporating a *Brownian motion* to the ODEs.
- Two common ways of addressing this kind of stochastic extension:
 - Adding arbitrary random noise.
 - Perturbing one (o more) of the existing model parameters.
- We choose the second alternative for interpretability purposes.
- In practice, the uncertainty will have impact on a particular model component, typically represented by a model parameter.
- A randomly perturbed parameter can be reasonably explained in terms of the variability produced by the source of the considered uncertainty.

Original model

Introduction

A stochastic compartmental model for the COVID-19

Original model

Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

We consider the (simplified) *θ*-SEIHRD model from [2].
Consisting in 9 equations, 6 coupled,

$$\begin{split} \frac{\mathrm{d}S}{\mathrm{d}t}(t) &= -\frac{S(t)}{N} \left(m_E(t)\beta_E E(t) + m_I(t)\beta_I I(t) + m_{I_u}(t)\beta_{I_u}(\theta(t))I_u(t) \right) \\ &- \frac{S(t)}{N} \left(m_{H_R}(t)\beta_{H_R}(t)H_R(t) + m_{H_D}(t)\beta_{H_D}(t)H_D(t) \right), \\ \frac{\mathrm{d}E}{\mathrm{d}t}(t) &= \frac{S(t)}{N} \left(m_E(t)\beta_E E(t) + m_I(t)\beta_I I(t) + m_{I_u}(t)\beta_{I_u}(\theta(t))I_u(t) \right) \\ &+ \frac{S(t)}{N} \left(m_{H_R}(t)\beta_{H_R}(t)H_R(t) + m_{H_D}(t)\beta_{H_D}(t)H_D(t) \right) - \gamma_E E(t), \\ \frac{\mathrm{d}I}{\mathrm{d}t}(t) &= \gamma_E E(t) - \gamma_I(t)I(t), \\ \frac{\mathrm{d}I_u}{\mathrm{d}t}(t) &= (1 - \theta(t))\gamma_I(t)I(t) - \gamma_{I_u}(t)I_u(t), \\ \frac{\mathrm{d}H_R}{\mathrm{d}t}(t) &= \theta(t) \left(1 - \frac{\omega(t)}{\theta(t)} \right) \gamma_I(t)I(t) - \gamma_{H_R}(t)H_R(t), \\ \frac{\mathrm{d}H_D}{\mathrm{d}t}(t) &= \omega(t)\gamma_I(t)I(t) - \gamma_{H_D}(t)H_D(t), \end{split}$$

Álvaro Leitao and Carlos Vázquez

Original model

Introduction

A stochastic compartmental model for the COVID-19

Original model

Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

$$\begin{split} \frac{\mathrm{d}R_d}{\mathrm{d}t}(t) &= \gamma_{H_R}(t)H_R(t),\\ \frac{\mathrm{d}R_u}{\mathrm{d}t}(t) &= \gamma_{I_u}(t)I_u(t),\\ \frac{\mathrm{d}D}{\mathrm{d}t}(t) &= \gamma_{H_D}(t)H_D(t). \end{split}$$

whose solution can be obtained by

$$egin{aligned} R_d(t) &= R_d(t_0) + \int_{t_0}^t \gamma_{H_R}(s) H_R(s) \mathrm{d}s, \ R_u(t) &= R_u(t_0) + \int_{t_0}^t \gamma_{I_u}(s) I_u(s) \mathrm{d}s, \ D(t) &= D(t_0) + \int_{t_0}^t \gamma_{H_D}(s) H_D(s) \mathrm{d}s, \end{aligned}$$

Álvaro Leitao and Carlos Vázquez

Original model

Compartments diagram

Introduction

A stochastic compartmental model for the COVID-19

Original model

Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

Figure: The θ -SEIHRD model diagram.

Álvaro Leitao and Carlos Vázquez

Original model Simplified version - Parameter

Introduction

A stochastic compartmental model for the COVID-19

Original model

Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

Efficiency of the control measures $m_E, m_I, m_{I_u}, m_{H_R}, m_{H_D} \in [0, 1](\%)$. Here, only one control measure is assumed, implemented at date λ_1 ,

$$m_X(t) = \begin{cases} 1, & \text{if } t \in [0, \lambda_1], \\ \exp\left(-\kappa_1(t-\lambda_1)\right), & \text{if } t \in [\lambda_1, T], \end{cases}$$

with the parameter $\kappa_1 \in [0, 0.2]$.

The fatality rate $\omega(t) \in [\underline{\omega}, \overline{\omega}] \subset [0, 1]$,

$$\omega(t) = m_l(t)\overline{\omega} + (1 - m_l(t))\underline{\omega},$$

with $\underline{\omega}$ and $\overline{\omega}$ being the fatality rate limits with and without control measures, $\overline{\omega} = \underline{\omega} + \delta_{\omega}$.

Álvaro Leitao and Carlos Vázquez

Original model Simplified version - Parameters

Introduction

A stochastic compartmental model for the COVID-19

Original model

Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

The fraction of detected individuals, $\theta \in [\overline{\omega}, 1]$,

$$\theta(t) = \begin{cases} \frac{\theta}{2}, & \text{if } t \in [t, \lambda_1], \\ \text{linear continuous,} & \text{if } t \in [\lambda_1, \lambda_2], \\ \overline{\theta}, & \text{if } t \in [\lambda_2, T], \end{cases}$$

with $\underline{\theta}, \overline{\theta}, \lambda_1, \lambda_2$ inferred from the data.

Compartment transition rates γ_E , γ_I , γ_{I_u} , γ_{H_R} , $\gamma_{H_D} \in (0, +\infty)$. Given the days in each compartment, d_E , d_I , d_{I_u} , d_{H_R} and d_{H_D} , with $d_{I_u} = d_{H_R}$ and $d_{H_D} = d_{H_R} + \delta_R$, $\delta_R > 0$,

$$\begin{split} \gamma_{I} &= \frac{1}{d_{E}}, \qquad \gamma_{I_{u}}(t) = \gamma_{H_{R}}(t) = \frac{1}{d_{I_{u}} + g(t)} \\ \gamma_{I}(t) &= \frac{1}{d_{I} - g(t)}, \qquad \gamma_{H_{D}}(t) = \frac{1}{d_{I_{u}} + g(t) + \delta_{R}}, \end{split}$$

where $g(t) = d_g(1 - m_l(t))$.

Álvaro Leitao and Carlos Vázquez

A stochastic *θ*-SEIHRD model

December 18, 2020 10/35

Original model Simplified version - Parameter

Introduction

A stochastic compartmental model for the COVID-19

Original model

Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

$$eta_{I_u}(t) = \underline{eta}_I + rac{eta_I - \underline{eta}_I}{1 - \omega(t)} (1 - \theta(t)),$$

where $\underline{\beta}_I = C_u \beta_I$, with C_E , $C_H(t)$ and $C_u \in [0, 1]$. Parameters C_E and C_u are obtained calibration, while

$$C_{H}(t) = \frac{\alpha_{H}\left(\frac{\beta_{I}}{\gamma_{I}(t)} + \frac{\beta_{E}}{\gamma_{E}(t)} + (1 - \theta(t))\frac{\beta_{I_{U}}(t)}{\gamma_{I_{U}}(t)}\right)}{(1 - \alpha_{H})\beta_{I}\theta(t)\left(\left(1 - \frac{\omega(t)}{\theta(t)}\right)\frac{1}{\gamma_{H_{R}}(t)} + \frac{\omega(t)}{\theta(t)}\frac{1}{\gamma_{H_{R}}(t)}\right)}$$

with α_H being the percentage of healthcare workers infected.

Álvaro Leitao and Carlos Vázquez

Introduction

A stochastic compartmental model for the COVID-19

Original model

Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

- We add randomness on the disease contact rates, β 's.
- Writing them in terms of β_I ,

$$\beta_E = \beta_I A_E, \quad \beta_{I_u} = \beta_I A_{I_u}, \quad \beta_{H_R} = \beta_I A_{H_R}, \quad \beta_{H_D} = \beta_I A_{H_D},$$

where

$$\begin{split} A_E &= C_E, \\ A_{I_U}(t) &= C_u + \frac{(1 - C_u)(1 - \theta(t))}{1 - \omega(t)}, \\ A_{H_R}(t) &= A_{H_D}(t) = \frac{\alpha_H \left(\frac{1}{\gamma_I(t)} + \frac{A_E}{\gamma_E} + (1 - \theta(t))\frac{A_{I_U}(t)}{\gamma_{I_U(t)}}\right)}{(1 - \alpha_H)\theta(t) \left((1 - \frac{\omega(t)}{\theta(t)})\frac{1}{\gamma_{H_R}(t)} + \frac{\omega(t)}{\theta(t)}\frac{1}{\gamma_{H_D}(t)}\right)}. \end{split}$$

Introduction

A stochastic compartmental model for the COVID-19

Original model

Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

• The θ -SEIHRD model can be rewritten as,

$$\begin{split} \frac{\mathrm{d}S}{\mathrm{d}t}(t) &= -\beta_I \frac{S(t)M(t)}{N},\\ \frac{\mathrm{d}E}{\mathrm{d}t}(t) &= \beta_I \frac{S(t)M(t)}{N} - \gamma_E E(t),\\ \frac{\mathrm{d}I}{\mathrm{d}t}(t) &= \gamma_E E(t) - \gamma_I I(t),\\ \frac{\mathrm{d}I_u}{\mathrm{d}t}(t) &= (1 - \theta(t))\gamma_I I(t) - \gamma_{I_u} I_u(t),\\ \frac{\mathrm{d}H_R}{\mathrm{d}t}(t) &= \theta(t) \left(1 - \frac{\omega(t)}{\theta(t)}\right) \gamma_I I(t) - \gamma_{H_R} H_R(t),\\ \frac{\mathrm{d}H_D}{\mathrm{d}t}(t) &= \omega(t)\gamma_I I(t) - \gamma_{H_D} H_D(t), \end{split}$$

where

$$M(t) = m_E A_E E(t) + m_I I(t) + m_{l_u} A_{l_u} I_u(t) + m_{H_R} A_{H_R} H_R(t) + m_{H_D} A_{H_D} H_D(t).$$

Álvaro Leitao and Carlos Vázquez

Adding stochasticity

Introduction

A stochastic compartmental model for the COVID-19

Original model

Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

- Replace the constant parameter β_I by a random walk.
- The disease contact rate in compartment *l* follows a newly introduced stochastic process, β_l(t).
- We choose the well-known CIR process [1].
- The main advantage of the CIR process: it ensures the spacial states to be non-negative.
- Further, the CIR process is a mean-reverting process.
- The dynamics of
 [˜]_β read

$$\mathrm{d}\tilde{\beta}_{l}(t) = \nu_{\beta_{l}}(\mu_{\beta_{l}} - \tilde{\beta}_{l}(t))\mathrm{d}t + \sigma_{\beta_{l}}\sqrt{\tilde{\beta}(t)}\mathrm{d}W(t)$$

where ν_{β_l} is the mean reverting speed, μ_{β_l} is the long-term average, σ_{β_l} is the volatility and dW(t) is a Brownian motion increment.

Álvaro Leitao and Carlos Vázquez

Introduction

A stochastic compartmental model for the COVID-19

Original model

Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

The system of SDEs governing the stochastic θ -SEIHRD model is given by,

 $\mathrm{d}S(t) = \tilde{\beta}_I(t) \frac{S(t)M(t)}{N} \mathrm{d}t$ $dE(t) = \left(\tilde{\beta}_I(t)\frac{S(t)M(t)}{N} - \gamma_E E(t)\right) dt$ $dI(t) = (\gamma_F E(t) - \gamma_I I(t)) dt,$ $dI_{\mu}(t) = \left((1 - \theta(t))\gamma_{\mu}I(t) - \gamma_{\mu}I_{\mu}(t) \right) dt,$ $\mathrm{d} H_R(t) = \left(\theta(t) \left(1 - \frac{\omega(t)}{\theta(t)}\right) \gamma_I I(t) - \gamma_{H_R} H_R(t)\right) \mathrm{d} t,$ $dH_D(t) = (\omega(t)\gamma_I I(t) - \gamma_{H_D} H_D(t)) dt,$ $\mathrm{d}R_d(t) = \gamma_{H_B}(t)H_B(t)\mathrm{d}t,$ $\mathrm{d}R_{\mu}(t) = \gamma_{I_{\mu}}(t)I_{\mu}(t)\mathrm{d}t,$ $dD(t) = \gamma_{H_D}(t)H_D(t)dt$ $\mathrm{d}\tilde{\beta}_{l}(t) = \nu_{\beta_{l}}(\mu_{\beta_{l}} - \tilde{\beta}_{l}(t))\mathrm{d}t + \sigma_{\beta_{l}}\sqrt{\tilde{\beta}_{l}(t)}\mathrm{d}W(t).$

with M(t) as defined before.

Álvaro Leitao and Carlos Vázquez

Introduction

A stochastic compartmental model for the COVID-19

Original model

Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

- The remaining equations depend on the first equations for S and E, which present a dependence on β̃_l.
- The CIR process is widely employed to simulate the evolution of interest rates in quantitative finance.
- In some sense, the interest rates in finance and the disease contact rates in epidemiology present a rather similar behaviour: positiveness, controlled variability and long-term stability.

The stochastic θ -SEIHRD model

Numerical solution

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extensio

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

- $S(0), E(0), I(0), I_u(0), H_R(0), H_D(0), R_d(0), R_u(0), D(0)$ and $\tilde{\beta}_I(0)$, the system of SDEs has a unique strong solution.
- As the system of SDEs is nonlinear, it is not possible to obtain a closed-form expression for the solution.
- The use of numerical methods becomes mandatory. We adopt the following strategy:
 - 1 Perform a simulation of the dynamics of $\tilde{\beta}_{I}(t)$, in accordance with the CIR process.
 - **2** Solve the resulting ODE system for each path of $\tilde{\beta}_l(t)$.
- We obtain a set of random walks for each stochastic process representing a model variable.

The stochastic θ -SEIHRD mode

Numerical solution

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extensio

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

- The CIR process is a well-studied dynamics often employed in computational finance.
- The underlying distribution is known analytically, relying on the non-central chi-squared distribution.
- Given two time points, s and t, s < t, the conditional distribution of β̃_l reads

$$ilde{eta}_l(t)| ilde{eta}_l(s)\sim c(t,s)\cdot\chi^2\left(d,rac{\mathrm{e}^{-
u_{eta_l}(t-s)}}{c(t,s)} ilde{eta}_l(s)
ight),$$

where

$$m{c}(t,m{s})=rac{\sigma_{eta_l}^2}{4\mu_{eta_l}}\left(1-\mathrm{e}^{-
u_{eta_l}(t-m{s})}
ight), \ \ m{d}=rac{4
u_{eta_l}\mu_{eta_l}}{\sigma_{eta_l}^2},$$

and $\chi^2(a, b)$ is the non-central chi-squared distribution with *a* degrees of freedom and non-centrality parameter *b*.

Álvaro Leitao and Carlos Vázquez

The stochastic θ -SEIHRD mode

Numerical solution

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extensio

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

- We can then define an *exact simulation* scheme, which can be used to obtain realizations of $\tilde{\beta}_l$.
- Given a set of m + 1 time points, $\{t_i\}_0^m$, where the solution will be computed, we have, for i = 0, ..., m 1,

$$egin{split} c(t_{i+1},t_i) &= rac{\sigma_{eta_l}^2}{4\mu_{eta_l}} \left(1-\mathrm{e}^{-
u_{eta_l}(t_{i+1}-t_i)}
ight), \ & ilde{eta}_l(t_{i+1}) &= c(t_{i+1},t_i)\chi^2 \left(d,rac{\mathrm{e}^{-
u_{eta_l}(t_{i+1}-t_i)}}{c(t_{i+1}-t_i)} ilde{eta}_l(t_i)
ight) \end{split}$$

given some initial value $\tilde{\beta}_l(t_0) = \tilde{\beta}_l(0)$.

By employing this scheme, we generate *n* simulated discrete sample paths of β_l.

The stochastic θ-SEIHRD model Potential

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

Figure: Deterministic vs. Stochastic: $\nu_{\beta_l} = 1$, $\mu_{\beta_l} = \beta_l$ and $\sigma_{\beta_l} = 0.1$, with $n = 2^{15}$ Monte Carlo simulations (only 8 simulations depicted).

Álvaro Leitao and Carlos Vázquez

A stochastic *θ*-SEIHRD model

December 18, 2020 20/35

The stochastic θ-SEIHRD model Potential

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

Figure: Deterministic vs. Stochastic: $\nu_{\beta_l} = 1$, $\mu_{\beta_l} = \beta_l$ and $\sigma_{\beta_l} = 0.1$, with $n = 2^{15}$ Monte Carlo simulations (only 8 simulations depicted).

The stochastic θ-SEIHRD model Potential

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

Figure: Deterministic vs. Stochastic: $\nu_{\beta_l} = 1$, $\mu_{\beta_l} = \beta_l$ and $\sigma_{\beta_l} = 0.1$, with $n = 2^{15}$ Monte Carlo simulations (only 8 simulations depicted).

Technicalities

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

- The numerical codes have been implemented in Python.
- We consider a equally spaced time grid, i.e. $\Delta t := t_{i+1} t_i, \forall i$, with time step $\Delta t = \frac{1}{6}$ (around 4 hours).
- We numerically solve *n* ODE systems, one for each path of $\tilde{\beta}_l$.
- We employ the explicit Runge-Kutta method of order 5(4), known as *RK45*, *RKDP*.
- Outcomes: the mean, the interquartile interval, $[Q_1, Q_3]$ and the worst case scenario (WS) at 95% confidence level.

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

$$H(t_0) = I_u(t_0) = H_R(t_0) = H_D(t_0) = R_d(t_0) = R_u(t_0) = D(t_0) = 0.$$

Notation	Value	Description			
β_{I}	0.2887	Disease contact rate of a person in compartment <i>I</i> .			
C_E	0.3643	Reduction factor of the disease contact rate β_E w.r.t β_I .			
Cu	0.4010	Reduction factor of the disease contact rate β_1 w.r.t β_1 .			
δ_R	7.0000	Difference between days in compartment H_{R}^{-} and H_{D} .			
δ_{ω}	0.0206	Difference between $\underline{\omega}$ and $\overline{\omega}$.			
$\underline{\omega}$	0.0157	Lower bound of the fatality rate.			
κ_1	0.1082	Efficiency of the control measures.			

Table: Parameters obtained by calibration to the data.

Coefficients and parameters

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

Notation	Value	Description				
N	1400812636	Total population.				
t ₀	1-12-2019	Initial date.				
Ť	29-3-2020	Final date.				
λ_1	23-1-2020	Date when travel restrictions were imposed in Wuhan.				
λ_2	8-2-2020	Inflexion date.				
$\underline{\theta}$	14%	Percentage of documented cases at λ_1 .				
<i>θ</i> 65%		Percentage of documented cases at λ_2 .				
α_H	2.75%	Percentage of infection produced by hospitalized people.				
d _E	5.5	Average days in compartment E.				
d	6.7	Average days in compartment <i>I</i> .				
d _{lu}	$14 - d_l = 7.3$	Average days in compartment I_{μ} .				
d_q	6	Maximum reduction of d ₁ due to the control measures.				
Čo	14	The period of convalescence.				
p(t)	1	Fraction of the infected people hospitalized.				

Table: Parameters extracted from the experience and/or literature.

Model variables

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extensi

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

		8th February, 2020 ($t = 69$)								
		$\sigma_{\beta_I} = 0$		$\sigma_{\beta_I} = 0.1$			$\sigma_{\beta_I} = 0.5$			
		Mean	Mean	$[Q_1, Q_3]$	WS (95%)	Mean	$[Q_1, Q_3]$	WS (95%)		
	E(t)	2993	3067	[2506, 3519]	4510	5401	[1049, 5415]	18970		
	I(t)	1340	1376	[1125, 1578]	2017	2419	[476, 2423]	8522		
	$I_{u}(t)$	3854	3945	[3249, 4505]	5724	6811	[1434, 6940]	23728		
	$H_{R}(t)$	3252	3328	[2732, 3806]	4854	5799	[1182, 5863]	20340		
	$H_D(t)$	214	219	[181, 250]	318	377	[80, 386]	1311		
	$R_d(t)$	1846	1888	[1559, 2153]	2726	3231	[701, 3317]	11168		
	$R_u(t)$	4296	4390	[3656, 4985]	6238	7301	[1738, 7690]	24654		
	D(t)	131	134	[112, 152]	190	222	[53, 235]	747		
:		29th March, 2020 (t = 119)								
		$\sigma_{\beta_I} = 0$	$\sigma_{\beta_I} = 0$ $\sigma_{\beta_I} = 0.1$				$\sigma_{\beta_I} = 0.5$			
		Mean	Mean	$[Q_1, Q_3]$	WS (95%)	Mean	$[Q_1, Q_3]$	WS (95%)		
	E(t)	1	1	[1, 1]	2	2	[0, 3]	10		
	I(t)	0	0	[0, 0]	0	0	[0, 0]	1		
	$I_{\mu}(t)$	170	477	[140.000]	250	200	[60 014]	1075		
		1/3		[146, 203]	259	309	[03, 314]	1075		
	$H_{R}(t)$	232	237	[194, 203]	348	416	[83, 420]	1458		
	$H_R(t)$ $H_D(t)$	232 30	237 30	[146, 203] [194, 272] [25, 35]	259 348 45	416 53	[83, 420] [11, 54]	1458 186		
	$H_R(t)$ $H_D(t)$ $R_d(t)$	232 30 8460	237 30 8662	[146, 203] [194, 272] [25, 35] [7118, 9910]	239 348 45 12624	416 53 15087	[83, 420] [83, 420] [11, 54] [3101, 15287]	1458 186 52651		
	$ \begin{array}{c} H_{R}(t) \\ H_{D}(t) \\ R_{d}(t) \\ R_{u}(t) \end{array} $	232 30 8460 9969	237 30 8662 10198	[146, 203] [194, 272] [25, 35] [7118, 9910] [8442, 11616]	239 348 45 12624 14681	416 53 15087 17386	[83, 420] [11, 54] [3101, 15287] [3862, 17941]	1458 186 52651 59616		

Table: Stochastic θ -SEIHRD model: $\nu_{\beta_l} = 1$, $\mu_{\beta_l} = \beta_l$ and $n = 2^{15}$ Monte Carlo simulations. Columns: metruantile interval ([Q_1, Q_3]) and worst case scenario (WS). Alvaro Leitao and Carlos Vazquez A stochastic θ -SEIHRD model December 18, 2020 26/35

Model variables

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

Figure: Histogram of I(t). Setting: $\nu_{\beta_l} = 1$ and $\mu_{\beta_l} = \beta_l$, with $n = 2^{15}$ Monte Carlo simulations.

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extensio

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

The cumulative number of COVID-19 cases, $c_m(t)$, at time *t*:

$$c_m(t) = H_R(t) + H_D(t) + R_d(t) + D(t) = c_m(t_0) + \int_{t_0}^t \theta(s) \gamma_I(s) ds.$$

- The cumulative number of deaths, at time t: $d_m(t) = D(t)$.
- The basic reproduction number, R_0 , and the effective reproduction number, $R_e(t)$, at time t, where $R_0 = R_e(t_0)$,

$$\mathcal{R}_{e}(t) = rac{U_{e}(t)}{\gamma_{E}\gamma_{I}(t)\gamma_{H_{B}}(t)\gamma_{H_{D}}(t)\gamma_{I_{u}}(t)}rac{S(t)}{N},$$

with

$$\begin{split} U_{e}(t) &= \left(\left((m_{l_{u}}\beta_{l_{u}}(1-\theta)\gamma_{H_{R}} + m_{H_{R}}\beta_{H_{R}}\gamma_{l_{u}}(\theta-\omega) \right)\gamma_{l} + m_{l}\beta_{l}\gamma_{H_{R}}\gamma_{l_{u}} \right)\gamma_{E} \\ &+ m_{E}\beta_{E}\gamma_{l}\gamma_{H_{R}}\gamma_{l_{u}}\gamma_{H_{D}} + m_{H_{D}}\beta_{H_{D}}\omega\gamma_{E}\gamma_{l}\gamma_{H_{R}}\gamma_{l_{u}}. \end{split}$$

Hospitalized people, Hos(t), at time t:

 $Hos(t) = H_D(t) + p(t) (H_R(t) + R_d(t) - R_d(t - C_o)).$

Álvaro Leitao and Carlos Vázquez

A stochastic *θ*-SEIHRD model

December 18, 2020 28/35

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

Maximum number of hospitalized people in the interval [t₀, t]:

$$\operatorname{MHos}(t) = \max_{\tau \in [t_0, t]} \operatorname{Hos}(\tau).$$

The number of individuals infected by others belonging to compartments *E*, I_u and $H = H_R + H_D$:

$$\begin{split} &\Gamma_E(t) = \int_{t_0}^t m_E(s)\beta_E E(s)\frac{S(s)}{N} \mathrm{d}s, \\ &\Gamma_{I_u}(t) = \int_{t_0}^t m_{I_u}(s)\beta_{I_u} I_u(s)\frac{S(s)}{N} \mathrm{d}s, \\ &\Gamma_H(t) = \int_{t_0}^t (m_{H_R}(s)\beta_{H_R}H_R(s) + m_{H_D}(s)\beta_{H_D}H_D(s))\frac{S(s)}{N} \mathrm{d}s, \end{split}$$

respectively.

Álvaro Leitao and Carlos Vázquez

A stochastic *θ*-SEIHRD model

December 18, 2020 29/35

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

		8th February, 2020 (<i>t</i> = 69)							
		$\sigma_{\beta_I} = 0$		$\sigma_{\beta_I} = 0.1$			$\sigma_{\beta_I} = 0.5$		
		Mean	Mean	$[Q_1, Q_3]$	WS (95%)	Mean	$[Q_1, Q_3]$	WS (95%	
	c _m (t)	5440	5571	[4586, 6362]	8088	9631	[2026, 9812]	33466	
	$d_m(t)$	131	134	[112, 152]	190	222	[53, 235]	747	
	$R_e(t)$	0.33	0.33	[0.31, 0.35]	0.38	0.33	[0.22, 0.41]	0.63	
	Hos(t)	4040	4134	[3395, 4727]	6026	7197	[1471, 7273]	25262	
	MHos(t)	4040	4134	[3395, 4727]	6026	7197	[1471, 7273]	25262	
	$\Gamma_F(t)$	5012	5126	[4255, 5833]	7337	8625	[1979, 9013]	29414	
	$\Gamma_{I_{ij}}(t)$	4550	4646	[3864, 5285]	6640	7600	[1764, 7976]	25755	
	$\Gamma_{H}^{u}(t)$	198	202	[168, 230]	288	328	[78, 346]	1106	
1		29th March, 2020 (t = 119)							
		$\sigma_{\beta_I} = 0$	$\sigma_{\beta_I} = 0.1$			$\sigma_{\beta_I} = 0.5$			
		Mean	Mean	$[Q_1, Q_3]$	WS (95%)	Mean	$[Q_1, Q_3]$	WS (95%	
	c _m (t)	9140	9358	[7691, 10704]	13631	16286	[3358, 16526]	56752	
	$d_m(t)$	417	426	[353, 486]	614	728	[161, 751]	2502	
	$R_e(t)$	0.0	0.0	[0.0,0.0]	0.0	0.0	[0.0, 0.0]	0.0	
	Hos(t)	306	314	[257, 360]	459	549	[111, 555]	1927	
	MHos(t)	4558	4671	[3832, 5347]	6816	8195	[1662, 8258]	28681	
	$\Gamma_F(t)$	5259	5379	[4464, 6122]	7705	9070	[2073, 9465]	30925	
	$\Gamma_{lii}(t)$	5388	5504	[4570, 6264]	7886	9082	[2080, 9479]	30911	
	$\Gamma_{H}^{o}(t)$	229	234	[195, 266]	334	384	[89, 402]	1298	

Table: Stochastic θ -SEIHRD model: $\nu_{\beta_l} = 1$, $\mu_{\beta_l} = \beta_l$ and $n = 2^{15}$ Monte Carlo simulations. Columns: mean, interquartile interval ([Q_1, Q_3]) and worst case scenario (WS). Avaro Leitao and Carlos Vazquez A stochastic θ -SEIHRD model (WS).

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extensio

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

Figure: Epidemic curves: mean, IQ interval and WS. Setting: $\nu_{\beta_l} = 1$, $\mu_{\beta_l} = \beta_l$ and $\sigma_{\beta_l} = 0.1$, with $n = 2^{15}$.

Álvaro Leitao and Carlos Vázquez

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extensio

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

Figure: Epidemic curves: mean, IQ interval and WS. Setting: $\nu_{\beta_l} = 1$, $\mu_{\beta_l} = \beta_l$ and $\sigma_{\beta_l} = 0.5$, with $n = 2^{15}$.

Álvaro Leitao and Carlos Vázquez

Conclusions

Discussion and and future research

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extensio

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

- We have extended an *ad-hoc* model by incorporating randomness to relevant coefficients (disease contact rates).
- We have shown the importance of considering the uncertainty.
- The presented modelling approach is more complete since it allows to compute confidence intervals and worst case scenarios.
- The information provided by the worst case scenarios can be useful to develop more conservative policies in the actions against the COVID-19 spread.
- A natural extension would be to consider independent contact rates, using different stochastic processes to characterize their dynamics.
- In this more general setting, a certain number of different (possibly correlated) Brownian motion processes would come into place.

Álvaro Leitao and Carlos Vázquez

References

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

John C. Cox, Jonathan E. Ingersoll, and Stephen A. Ross.

A theory of the term structure of interest rates.

```
Econometrica, 53(2):385–407, 1985.
```


Benjamin Ivorra, Miriam R. Ferrández, María Vela-Pérez, and Ángel M. Ramos.

Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China.

Communications in Nonlinear Science and Numerical Simulation, 88:105303, 2020.

Álvaro Leitao and Carlos Vázquez.

A stochastic θ -SEIHRD model: adding randomness to the COVID-19 spread, 2020.

Available at arXiv: https://arxiv.org/abs/2010.15504.

Acknowledgements

Introduction

A stochastic compartmental model for the COVID-19

Original model Stochastic extension

Numerical solution of the stochastic θ-SEIHRD model

Numerical and statistical analysis

Conclusions

This work was funded by Xunta de Galicia grant ED431C2018/033, including FEDER funding. Both authors also acknowledge the support received from the Centro de Investigación de Galicia "CITIC", funded by Xunta de Galicia and the European Union (European Regional Development Fund- Galicia 2014-2020 Program), by grant ED431G 2019/01.

Álvaro Leitao acknowledges the financial support from the Spanish Ministry of Science, Innovation and Universities, through the Juan de la Cierva-formación 2017 (FJC17) grant in the framework of the national programme for R&D 2013-2016.

Thank you for your attention

More: alvaroleitao.github.io

Álvaro Leitao and Carlos Vázquez

A stochastic *θ*-SEIHRD model

December 18, 2020 35/35