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“Our” definition of simulation

Generate samples from (sampling) stochastic processes.

The standard approach to sample from a given distribution, Z :

FZ (Z )
d
= U thus zn = F−1

Z (un),

FZ is the cumulative distribution function (CDF).
d
= means equality in the distribution sense.

U ∼ U([0, 1]) and un is a sample from U([0, 1]).

The computational cost depends on inversion F−1
Z .
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SABR model

The formal definition of the SABR model [5] reads

df (t) = σ(t)f β(t)dWf (t), f (0) = S0,

dσ(t) = ασ(t)dWσ(t), σ(0) = σ0,

f (t) = S(t)ert is forward price of the underlying asset S(t).

σ(t) is the stochastic volatility.

Wf (t) and Wσ(t) are two correlated Brownian motions

SABR parameters:
I The volatility of the volatility, α > 0.
I The CEV elasticity, 0 ≤ β ≤ 1.
I The correlation coefficient, ρ (WfWσ = ρt)
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“Exact” simulation of SABR model

Based on Islah [6], the conditional cumulative distribution function
(CDF) of f (t) in a generic interval [s, t], 0 ≤ s ≤ t ≤ T :

Pr

(
f (t) ≤ K |f (s) > 0, σ(s), σ(t),

∫ t

s
σ2(z)dz

)
= 1− χ2(a; b, c),

where

a =
1

ν(t)

(
f (s)1−β

(1− β)
+
ρ

α
(σ(t)− σ(s))

)2

,

c =
K 2(1−β)

(1− β)2ν(t)
,

b = 2− 1− 2β − ρ2(1− β)

(1− β)(1− ρ2)
,

ν(t) = (1− ρ2)

∫ t

s
σ2(z)dz ,

and χ2(x ; δ, λ) is the non-central chi-square CDF.

Exact in the case of ρ = 0, an approximation otherwise.
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Simulation of SABR model

Simulation of the volatility process, σ(t)|σ(s):

σ(t) ∼ σ(s) exp(αŴσ(t)− 1

2
α2t),

where Ŵσ(t) is a independent Brownian motion.

Simulation of the integrated variance process,
∫ t
s σ

2(z)dz |σ(t), σ(s).

Simulation of the forward process, f (t)|f (s),
∫ t
s σ

2(z)dz , σ(t), σ(s) by
inverting the CDF.

The conditional integrated variance is a challenging part. We
propose:

I Approximate the conditional distribution by using Fourier techniques
and copulas.

I Marginal distribution based on COS method [3].
I Conditional distribution based on copulas.
I Improvements for a fast computations.
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Distribution of the integrated variance

Not available.

For notational convenience, we will use Y (s, t) :=
∫ t
s σ

2(z)dz .

Discrete equivalent, M monitoring dates:

Y (s, t) :=

∫ t

s
σ2(z)dz ≈

M∑
j=1

∆tσ2(tj) =: Ŷ (s, t)

where tj = s + j∆t, j = 1, . . . ,M and ∆t = t−s
M .

In the logarithmic domain, where we aim to find an approximation of
Flog Ŷ | log σ(s):

Flog Ŷ | log σ(s)(x) =

∫ x

−∞
flog Ŷ | log σ(s)(y)dy ,

where flog Ŷ | log σ(s) is the probability density function (PDF) of

log Ŷ (s, t)| log σ(s).
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PDF of the integrated variance

Equivalent: Characteristic function and inversion (Fourier pair).

Recursive procedure to derive an approximated φlog Ŷ | log σ(s).

We start by defining the logarithmic increment of σ2(t):

Rj = log

(
σ2(tj)

σ2(tj−1)

)
, j = 1, . . . ,M

σ2(tj) can be written:

σ2(tj) = σ2(t0) exp(R1 + R2 + · · ·+ Rj).

We introduce the iterative process

Y1 = RM ,

Yj = RM+1−j + Zj−1, j = 2, . . . ,M.

with Zj = log(1 + exp(Yj)).
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PDF of the integrated variance (cont.)

Ŷ (s, t) can be expressed:

Ŷ (s, t) =
M∑
i=1

σ2(ti )∆t = ∆tσ2(s) exp(YM).

And, we compute φlog Ŷ | log σ(s)(u), as follows:

φlog Ŷ | log σ(s)(u) = exp
(
iu log(∆tσ2(s))

)
φYM

(u).

By applying COS method in the support [â, b̂]:

flog Ŷ | log σ(s)(x) ≈ 2

b̂ − â

N−1′∑
k=0

Ck cos

(
(x − â)

kπ

b̂ − â

)
,

with

Ck = <
(
φlog Ŷ | log σ(s)

(
kπ

b̂ − â

)
exp

(
−i âkπ

b̂ − â

))
.
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CDF of the integrated variance

The CDF of log Ŷ (s, t)| log σ(s):

Flog Ŷ | log σ(s)(x) =

∫ x

−∞
flog Ŷ | log σ(s)(y)dy

≈
∫ x

â

2

b̂ − â

N−1′∑
k=0

Ck cos

(
(y − â)

kπ

b̂ − â

)
dy .

The efficient computation of φYM
(u) is crucial for the performance of

the whole procedure (specially, one-step case).

The inversion of Flog Ŷ | log σ(s) is relatively expensive (unafforable in

the multi-step case).
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Copula-based simulation of
∫ t

s σ
2(z)dz |σ(t), σ(s)

In order to apply copulas, we need (logarithmic domain):
I Flog Ŷ | log σ(s).
I Flog σ(t)| log σ(s).
I Correlation between logY (s, t) and log σ(t).

The distribution of log σ(t)| log σ(s) = z is

N
(
µlog σ(t) + Plog σ(t),log σ(s)

slog σ(t)

slog σ(s)
(z − µlog σ(t)), slog σ(t)

√
1− P2

log σ(t),log σ(s)

)
,

where all the quantities are known.

Approximated Pearson’s correlation coefficient:

Plog Y ,log σ(t) ≈
t2 − s2

2
√(

1
3 t

4 + 2
3 ts

3 − t2s2
) .

For some copulas, like Archimedean, Kendall’s τ is required:

P = sin
(π

2
τ
)
.
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Sampling
∫ t

s σ
2(z)dz |σ(t), σ(s): Steps

1 Determine Flog σ(t)| log σ(s) and Flog Ŷ | log σ(s).

2 Determine the correlation between logY (s, t) and log σ(t).

3 Generate correlated uniform samples, Ulog σ(t)| log σ(s) and
Ulog Ŷ | log σ(s) by means of copula.

4 From Ulog σ(t)| log σ(s) and Ulog Ŷ | log σ(s) invert original marginal
distributions.

5 The samples of σ(t)|σ(s) and Y (s, t) =
∫ t
s σ

2(z)dz |σ(t), σ(s) are
obtained by taking exponentials.
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One time-step simulation of the SABR model

s = 0 and t = T , with T the maturity time.

The use is restricted to price European options up to T = 2.

log σ(s) becomes constant.

Flog σ(t)| log σ(s) and Flog Ŷ | log σ(s) turn into Flog σ(T ) and Flog Ŷ (T ).

The computation of φlog Ŷ (T ) is much simpler and very fast.

The approximated Pearson’s coefficient results in a constant value:

Plog Y (T ),log σ(T ) ≈
T 2

2
√

1
3T

4
=

√
3

2
.
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Approximated correlation
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Figure: Pearson’s coefficient: Empirical (surface) vs. approximation (red grid).
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Copula analysis

Based on the one-step simulation, a copula analysis is carried out.

Gaussian, Student t and Archimedean (Clayton, Frank and Gumbel).

A goodness-of-fit (GOF) for copulas needs to be evaluated.

Archimedean: graphic GOF based on Kendall’s processes.

Generic GOF based on the so-called Deheuvels or empirical copula.

S0 σ0 α β ρ T

Set I 1.0 0.5 0.4 0.7 0.0 2
Set II 0.05 0.1 0.4 0.0 −0.8 0.5
Set III 0.04 0.4 0.8 1.0 −0.5 2

Table: Data sets.
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GOF - Archimedean
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(b) Set II.
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(c) Set III.

Figure: Archimedean GOF test: λ̂(u) vs. empirical λ(u).

Clayton Frank Gumbel

Set I 1.3469× 10−3 2.9909× 10−4 5.1723× 10−5

Set II 1.0885× 10−3 2.1249× 10−4 8.4834× 10−5

Set III 2.1151× 10−3 7.5271× 10−4 2.6664× 10−4

Table: MSE of λ̂(u)− λ(u).
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Generic GOF

Gaussian Student t (ν = 5) Gumbel

Set I 5.0323× 10−3 5.0242× 10−3 3.8063× 10−3

Set II 3.1049× 10−3 3.0659× 10−3 4.5703× 10−3

Set III 5.9439× 10−3 6.0041× 10−3 4.3210× 10−3

Table: Generic GOF: D2.

The three copulas perform very similarly.

For longer maturities: Gumbel performs better.

The Student t copula is discarded: very similar to the Gaussian
copula and the calibration of the ν parameter adds extra complexity.

As a general strategy, the Gumbel copula is the most robust choice.

With short maturities, the Gaussian copula may be a satisfactory
alternative.
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Pricing European options

The strike values Xi are chosen following the expression:

Xi (T ) = f (0) exp(0.1× T × δi ),
δi = −1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5.

Forward asset, f (T ): Bin Chen’s enhanced inversion [2].

Convergence and execution time in term of number of samples, n:

n = 1000 n = 10000 n = 100000 n = 1000000

Gaussian (Set I, X1)

Error 519.58 132.39 37.42 16.23
Time 0.3386 0.3440 0.3857 0.5733

Gumbel (Set I, X1)

Error 151.44 −123.76 34.14 11.59
Time 0.3492 0.3561 0.3874 0.6663

Table: Convergence in n: error (basis points) and time (sec .).
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Pricing European options - Implied volatilities
Strikes X1 X2 X3 X4 X5 X6 X7

Set I (Reference: Antonov [1])
Hagan 55.07 52.34 50.08 N/A 47.04 46.26 45.97

MC 23.50 21.41 19.38 N/A 16.59 15.58 14.63
Gaussian 16.23 20.79 24.95 N/A 33.40 37.03 40.72
Gumbel 11.59 15.57 19.12 N/A 25.41 28.66 31.79

Set II (Reference: Korn [7])
Hagan −558.82 −492.37 −432.11 −377.47 −327.92 −282.98 −242.22

MC 5.30 6.50 7.85 9.32 10.82 12.25 13.66
Gaussian 9.93 9.98 10.02 10.20 10.57 10.73 11.04
Gumbel −9.93 −9.38 −8.94 −8.35 −7.69 −6.83 −5.79

Set III (Reference: MC Milstein)
Hagan 287.05 252.91 220.39 190.36 163.87 141.88 126.39

Gaussian 16.10 16.76 16.62 15.22 13.85 12.29 10.67
Gumbel 6.99 3.79 0.67 −2.27 −5.57 −9.79 −14.06

Table: Implied volatility: errors in basis points.

One-step SABR simulation is a fast alternative to Hagan formula.

Overcomes the known issues, like low strikes and high volatilities.

For long maturities: multiple time-step version.
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Multiple time-step simulation of the SABR model

In intermediate steps, φlog Ŷ | log σ(s) becomes “stochastic”.

flog Ŷ | log σ(s) needs to be computed for each sample of log σ(s).

Consequently, the inversion of Flog Ŷ | log σ(s) is unafforable (n ↑↑).

Solution: Stochastic Collocation Monte Carlo (SCMC) sampler [4].

yn|vn ≈ gLŶ ,Lσ(xn) =

LŶ∑
i=1

Lσ∑
j=1

F−1

log Ŷ | log σ(s)=vj
(FX (xi ))`i (xn)`j(vn),

where xn are the samples from the cheap variable, X , and vn the
given samples of log σ(s). xi and vj are the collocation points of X
and log σ(s), respectively. `i and `j are the Lagrange polynomials
defined by

`i (xn) =

LŶ∏
k=1,k 6=i

xn − xk
xi − xk

, `j(vn) =
Lσ∏

k=1,k 6=j

vn − vk
vi − vk

.
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Application of 2D SCMC to Flog Ŷ | log σ(s)

log σ(s)
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(a) log Ŷ | log σ(s) - Direct inversion
vs. SCMC.
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(b) Flog Ŷ | log σ(s)(x).

Samples Without SCMC With SCMC

LŶ = Lσ = 3 LŶ = Lσ = 7 LŶ = Lσ = 11

100 1.0695 0.0449 0.0466 0.0660
10000 16.3483 0.0518 0.0588 0.0798

1000000 1624.3019 0.2648 0.5882 1.0940

Table: SCMC time.
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Multi-step SABR simulation - Pricing

Data sets.

S0 σ0 α β ρ T

Set I 1 0.3 0.5 1.0 −0.8 5
Set II 0.5 0.5 0.4 0.5 0.0 2
Set III 0.035 0.01 0.5 0.0 0.0 30

Convergence in term of number of time-steps, m (Set II).

Strikes X1 X2 X3 X4 X5 X6 X7

Antonov[1] 75.51% 74.18% 72.90% N/A 70.47% 69.32% 68.22%
Copula (m = T/2) 72.43% 71.45% 70.49% 69.55% 68.63% 67.74% 66.88%

Diff.(bp) −307.56 −272.86 −240.61 N/A −183.50 −158.05 −134.38
Copula (m = T ) 74.65% 73.43% 72.25% 71.11% 70.00% 68.93% 67.91%

Diff.(bp) −85.84 −74.88 −64.74 N/A −46.65 −38.66 −31.33
Copula (m = 2T ) 75.43% 74.14% 72.89% 71.68% 70.51% 69.39% 68.31%

Diff.(bp) −8.00 −4.70 −1.39 N/A 4.13 6.44 8.58
Copula (m = 12T ) 75.55% 74.22% 72.93% 71.68% 70.48% 69.33% 68.23%

Diff.(bp) 4.45 3.70 2.82 N/A 1.58 0.92 0.36

Table: Implied volatility: Antonov vs. Copula.
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Pricing - Implied volatilities
n = 1000000 and m = 2T :
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(c) Implied volatility set I.
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(d) Implied volatility set II.
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(e) Implied volatility set III.

Figure: Pricing.
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Conclusions

We propose an efficient SABR simulation based on Fourier and
copula techniques.

The one-step SABR is a fast alternative to Hagan formula for short
maturities.

Overcomes the known issues of Hagan’s expression.

When long maturities are considered, multi-step version.

High accuracy with very few number of time-steps.
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Questions

Thank you for your attention
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