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“Our"” definition of simulation

Generate samples from (sampling) stochastic processes.

The standard approach to sample from a given distribution, Z:
F2(Z) 2 U thus z, = F;(up),

e Fz is the cumulative distribution function (CDF).

4 means equality in the distribution sense.
U~ U([0,1]) and u, is a sample from ([0, 1]).

The computational cost depends on inversion Fz’l.
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SABR model

@ The formal definition of the SABR model [5] reads

df(t) = o(t)FP(t)dWs(t), £(0) = So,
do(t) = ao(t)dW,(t), o(0) = oy,

f(t) = S(t)e™ is forward price of the underlying asset S(t).
o(t) is the stochastic volatility.
We(t) and W, (t) are two correlated Brownian motions

SABR parameters:

» The volatility of the volatility, a > 0.
» The CEV elasticity, 0 < g < 1.
» The correlation coefficient, p (WrW, = pt)
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“Exact” simulation of SABR model

@ Based on Islah [6], the conditional cumulative distribution function

(CDF) of f(t) in a generic interval [5,t], 0 <s<t<T:

Pr (f(t) < K|f(s) > 0,0(5),a(t),/5t02(z)dz> —1-\¥(a: b, <),

where - )
_ L ()" e
=it (o a0 =)
B K2(1-5)
T -2ty
L, 1=28-p*(1-p)
O GRS} R i

v(t) = (1—p?) / 02(2)dz.

and x?(x; 0, \) is the non-central chi-square CDF.
@ Exact in the case of p = 0, an approximation otherwise.
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Simulation of SABR model

e Simulation of the volatility process, o(t)|o(s):

o(t) ~ o(s) exp(aW,(t) — §a2t),

where W, (t) is a independent Brownian motion.
e Simulation of the integrated variance process, fst 0?(z)dz|o(t), o(s).

e Simulation of the forward process, f(t)\f(s),fst 0?(z)dz,o(t),o(s) by
inverting the CDF.
@ The conditional integrated variance is a challenging part. We
propose:
» Approximate the conditional distribution by using Fourier techniques
and copulas.
» Marginal distribution based on COS method [3].
» Conditional distribution based on copulas.
> Improvements for a fast computations.

A. Leitao & Lech Grzelak & Kees Qosterlee Efficient SABR CWI - February 15, 2016 6 /26



Distribution of the integrated variance

@ Not available.
e For notational convenience, we will use Y(s,t) := fst 0?(z)dz.

@ Discrete equivalent, M monitoring dates:

¢ M
Y(s,t) = / 2(2)dz~ Y Ato?(5) = V(s,1)
S J:]-
where tj = s+ jAt, j=1,...,M and At = 7.
@ In the logarithmic domain, where we aim to find an approximation of
Flog Y| Ioga’(s):

Fiog ¥/10go(s)(X) = /_ fog V| log o(5) (Y)Y

[e.9]

where f, ) is the probability density function (PDF) of

o log Yl|logo(s
log Y (s, t)|log o(s).
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PDF of the integrated variance

Equivalent: Characteristic function and inversion (Fourier pair).

Recursive procedure to derive an approximated gblog Vlog o(s)"

We start by defining the logarithmic increment of o?(t):

() \
RJ:IOg(O-2(1-11)> ,_j:].,...,M

e 02(t;) can be written:

o?(tj)) = o*(to) exp(R1 + Ry + -+ - + R}).

We introduce the iterative process

YIIRM7
Yi=Rmi1—j+Zj—1, j=2,..., M.

with Z; = log(1 + exp(Y})).
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PDF of the integrated variance (cont.)

o Y(s,t) can be expressed:

M
Y(s.t) =Y o*(t)At = Ato?(s) exp(Yu).
i=1
® And, we compute ¢, . V||oga(s)(”)v as follows:
¢Iog Y| Iogcr(S)(u) =&xp (iu |og(At02(s))) Dy (u)-
e By applying COS method in the support [4, 13]:

N—1
2 A
flog{,“ogg(s)(x) ~ T ;) Cy cos <(x—a) B—é)’

km . akm
Ck =% <¢Iog \A/\Iogo(s) (E _ é\) exp <_IB_ 5)) :
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CDF of the integrated variance

e The CDF of log Y (s, t)| log o(s):
Flog Y|logo s) / Iog Y|log a(s)( )dy

((y —4) bk_ﬂa> dy.

o The efficient computation of ¢v,,(u) is crucial for the performance of
the whole procedure (specially, one-step case).

@ The inversion of F, (s) IS relatively expensive (unafforable in

og Y|log o
the multi-step case).
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Copula-based simulation of [ 02(z)dz|o(t), o(s)

@ In order to apply copulas, we need (logarithmic domain):

> Flog Y|logo(s):

> Flogo(t)|log o(s)-

» Correlation between log Y'(s, t) and log o(t).
e The distribution of logo(t)|logo(s) =z is

Siog o (t)

N (Hlogo(t) + Plogo(t),log o(s) (z - NlogO(t))a Slog o (t) 1- Plig o(t),log o'(s)) )

Siog o (s)
where all the quantities are known.
@ Approximated Pearson’s correlation coefficient:

$2 _ 2
2\/(%1*4 + 3153 — t252)
@ For some copulas, like Archimedean, Kendall's 7 is required:
T
P =sin (— ) )
27'
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Sampling [ 0?(z)dz|o(t), o(s): Steps

© Determine Flogcr(t)||0g0(5) and Flog Y|logo(s)’

@ Determine the correlation between log Y (s, t) and log o(t).
© Generate correlated uniform samples, Ujog (1) log o(s) @nd
U|Og ¥|log o(s) by means of copula.

Q From Uog o(t)|l0go(s) @and U invert original marginal

distributions.
© The samples of o(t)|o(s) and Y(s,t) = fst 02(2)dz|o(t),o(s) are
obtained by taking exponentials.

og Y| log o(s)
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One time-step simulation of the SABR model

@ s=0and t= T, with T the maturity time.
@ The use is restricted to price European options up to 7 = 2.
@ logo(s) becomes constant.
® Fiogo(t)llogo(s) aNd Fiog v10g o(s) tUMN into Fiog o(1y and Fo o).
@ The computation of gblog (1) is much simpler and very fast.
@ The approximated Pearson's coefficient results in a constant value:
T2 V3
Piog Y(T)Jogo(T) ¥ — === —
2,/5T*
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Approximated correlation

Figure: Pearson’s coefficient: Empirical (surface) vs. approximation (red grid).
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Copula analysis

@ Based on the one-step simulation, a copula analysis is carried out.
Gaussian, Student t and Archimedean (Clayton, Frank and Gumbel).

°
e A goodness-of-fit (GOF) for copulas needs to be evaluated.
@ Archimedean: graphic GOF based on Kendall's processes.

°

Generic GOF based on the so-called Deheuvels or empirical copula.

| So o0 o B P
Set | 1.0 05 04 07 0.0 2
Setll | 0.05 0.1 04 00 -0.8 05
SetIll | 0.04 04 08 1.0 —-05 2

Table: Data sets.
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GOF - Archimedean

0 0 0
[—Empirical A(u) y N —Empirical A(u) A \ [—Empirical Au) P
|- -Clayton A i\ - Clayton fi N |- -Clayton i
\N Frank E N Frank /i
005 [\ ™ |--Gumbel 005 [{ v, |--Gumbel
SO - .
= =
01 01
0.15 0.15 0.15
05 1 05 1 0.5 1
u u u
(a) Set I (b) Set Il. (c) Set INI.

Figure: Archimedean GOF test: A(u) vs. empirical A(u).

\ Clayton Frank Gumbel
Set | | 1.3469 x 10~ 2.9909 x 10~% 5.1723 x 10>
Set Il | 1.0885 x 1073 2.1249 x 10~* 8.4834 x 107>
Set Il | 2.1151 x 1073  7.5271 x 10~* 2.6664 x 10~*

Table: MSE of A(u) — A(u).
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Generic GOF

| Gaussian Student t (v = 5) Gumbel

Set| [5.0323 x 103  5.0242 x 1073  3.8063 x 103
Set Il | 3.1049 x 1073 3.0659 x 103  4.5703 x 103
Set Il | 5.9439 x 1073  6.0041 x 1073 4.3210 x 103

Table: Generic GOF: D;.

@ The three copulas perform very similarly.
@ For longer maturities: Gumbel performs better.

@ The Student t copula is discarded: very similar to the Gaussian
copula and the calibration of the v parameter adds extra complexity.

@ As a general strategy, the Gumbel copula is the most robust choice.

@ With short maturities, the Gaussian copula may be a satisfactory
alternative.

A. Leitao & Lech Grzelak & Kees Qosterlee Efficient SABR CWI - February 15, 2016 17 / 26



Pricing European options
@ The strike values X; are chosen following the expression:
Xi(T) =1f(0)exp(0.1 x T x9;),
0j = —1.5,-1.0,—0.5,0.0,0.5,1.0,1.5.

e Forward asset, f(T): Bin Chen's enhanced inversion [2].
@ Convergence and execution time in term of number of samples, n:

\ n=1000 n=10000 n =100000 n = 1000000

Gaussian (Set I, X1)
Error | 519.58 132.39 37.42 16.23
Time | 0.3386 0.3440 0.3857 0.5733
Gumbel (Set I, Xi)
Error | 151.44 —123.76 34.14 11.59
Time | 0.3492 0.3561 0.3874 0.6663

Table: Convergence in n: error (basis points) and time (sec.).
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Pricing European options - Implied volatilities

Strikes [ X1 Xa X3 Xy X5 Xe X7
Set | (Reference: Antonov [1])
Hagan 55.07 52.34 50.08 N/A 47.04 46.26 45.97
MC 23.50 21.41 19.38 N/A 16.59 15.58 14.63
Gaussian 16.23 20.79 24.95 N/A 33.40 37.03 40.72
Gumbel 11.59 15.57 19.12 N/A 25.41 28.66 31.79
Set Il (Reference: Korn [7])
Hagan —558.82 —492.37 —432.11 -377.47 —327.92 28298 —242.22
MC 5.30 6.50 7.85 9.32 10.82 12.25 13.66
Gaussian 9.93 9.98 10.02 10.20 10.57 10.73 11.04
Gumbel —9.93 —9.38 —8.94 —8.35 —7.69 —6.83 —5.79
Set Il (Reference: MC Milstein)
Hagan 287.05 252.91 220.39 190.36 163.87 141.88 126.39
Gaussian 16.10 16.76 16.62 15.22 13.85 12.29 10.67
Gumbel 6.99 3.79 0.67 —2.27 —5.57 —9.79 —14.06

Table: Implied volatility: errors in basis points.

@ One-step SABR simulation is a fast alternative to Hagan formula.
@ Overcomes the known issues, like low strikes and high volatilities.
@ For long maturities: multiple time-step version.
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Multiple time-step simulation of the SABR model

In intermediate steps, ¢|0g ¥|log o(s) becomes “stochastic”.
f, needs to be computed for each sample of log o (s).
Consequently, the inversion of F|c>g V| 10g o(s) is unafforable (n 11).

Solution: Stochastic Collocation Monte Carlo (SCMC) sampler [4].

og Y|log o(s)

Vol = g1, 1, (%n) Zij Fo 51 tog ey (RO G (1)

i=1 j=1

where x,, are the samples from the cheap variable, X, and v, the
given samples of logo(s). x; and v; are the collocation points of X
and log o (s), respectively. ¢; and ¢; are the Lagrange polynomials

defined by
o Xp — Xk = Vn — Vk
o= TT 2% o= I ot
. Xi — Xk L Vi — Vg
k=1 ki k=1.k]
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Application of 2D SCMC to F,

0

og Y|log o (s)

1

K
08
%o.a
Y E
= 204
=
0.2
0
: 05 -6 -4 2 0 2
logo(s) T
(a) log Y|logo(s) - Direct inversion (0) Fiog ¢ 10g o(s) (X)-
vs. SCMC.
Samples || Without SCMC With SCMC
LVZLJ=3 LVZLU=7 LV:LUZ].].
100 1.0695 0.0449 0.0466 0.0660
10000 16.3483 0.0518 0.0588 0.0798
1000000 1624.3019 0.2648 0.5882 1.0940
Table: SCMC time.
N = ity o e L3



Multi-step SABR simulation - Pricing

e Data sets.
‘ So 00 o 8 p T
Set | 1 03 05 10 -08 5
Set Il 0.5 05 04 05 00 2
Set Ill | 0.035 0.01 0.5 0.0 0.0 30
e Convergence in term of number of time-steps, m (Set Il).
Strikes [ X X5 X3 X, X5 Xo X7
Antonov[1] 75.51% 74.18% 72.90% N/A 70.47% 69.32% 68.22%
Copula (m=T/2) 72.43% 71.45% 70.49% 69.55% 68.63% 67.74% 66.88%
Diff.(bp) —307.56 —272.86 —240.61 N/A —183.50 —158.05 —134.38
Copula (m=T) 74.65% 73.43% 72.25% 71.11% 70.00% 68.93% 67.91%
Diff.(bp) —85.84 —74.88 —64.74 N/A —46.65 —38.66 —31.33
Copula (m =2T) 75.43% 74.14% 72.89% 71.68% 70.51% 69.39% 68.31%
Diff.(bp) —8.00 —4.70 —1.39 N/A 4.13 6.44 8.58
Copula (m = 12T) | 75.55% 74.22% 72.93%  71.68%  70.48% 69.33% 68.23%
Diff. (bp) 4.45 3.70 2.82 N/A 1.58 0.92 0.36
Table: Implied volatility: Antonov vs. Copula.
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Pricing - Implied volatilities
@ n = 1000000 and m=2T:

—s—Hagan —s—Hagan
03 —4—Monte Carlo 0.76 —&—Monte Carlo
——Copula i ——Copula
0.28 0.74 Antonov.

Implied Volatility
o
>
Implied Volatility
o
N

0.24
0.22 07 \\
0.2 0.68 =
0.6 0.8 1 1.2 1.4 0.4 0.45 0.5 0.55 0.6 0.65
X; X;
(c) Implied volatility set I. (d) Implied volatility set II.

—e+—Hagan
—&—Monte Carlo
—4+—Copula
—*—Korn

Implied Volatility
o
o

0 0.02 0.04 0.06 0.08
Xi

(e) Implied volatility set IlI.
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Conclusions

We propose an efficient SABR simulation based on Fourier and
copula techniques.

@ The one-step SABR is a fast alternative to Hagan formula for short
maturities.

Overcomes the known issues of Hagan's expression.

When long maturities are considered, multi-step version.

High accuracy with very few number of time-steps.
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Questions

Thank you for your attention
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