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Motivation

Efficient calculation of option sensitivities is a problem of practical
importance.

For many pricing problems, Monte Carlo is the only feasible choice, as
typically for early-exercise options.

Usual finite differences approach (bump-and-revalue) provides poor
estimations at high computational cost.

Sensitivities along the paths, i.e. at intermediate times, is even more
involved.

“Generalization” of the Smoking adjoints technique by Giles and
Glasserman to a generic interval.

Sensitivities required for MVA calculations.

Hedging in energy markets: multiple exercise contracts.
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Problem formulation

d−dimensional Bermudan option pricing problem.

Xt = (X 1
t , . . . ,X

d
t ) ∈ Rd , depending on parameters

θ = {θ1, . . . , θNθ}.

Let ht := h(Xt) the intrinsic value of the option at time t.

The holder receives max(ht , 0), if the option is exercised.

The problem is to compute

Vt0(Xt0)

Bt0

= max
τ

E
[
h(Xτ )

Bτ

]
,

where Bt is the risk-free saving account process and τ is a stopping
time.

Optimization problem: determine the early-exercise policy.
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Problem formulation

It can be solved by the dynamic programming principle.

The option value at the terminal time T is

VT (XT ) = max(h(XT ), 0).

We solve the problem recursively, moving backwards in time.

The continuation value Qtm−1 is given by

Qtm−1(Xtm−1) = Btm−1E
[
Vtm(Xtm)

Btm

∣∣∣∣Xtm−1

]
.

The Bermudan option value at time tm−1 and state Xtm−1 reads

Vtm−1(Xtm−1) = max(h(Xtm−1),Qtm−1(Xtm−1)).

We are interested in Vt0 .
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Stochastic Grid Bundling Method (SGBM)

SGBM is based on N independent paths, {Xt0 , . . . ,XtM}, obtained by
a discretization scheme

Xtm(n) = Fm−1(Xtm−1(n),Ztm−1(n), θ),

where n = 1, . . . ,N is the index of the path.

Ztm−1 is a d-dimensional standard normal random vector.

Fm−1 is a transformation from Rd to Rd .

The method starts by computing the option value at terminal time as

VtM (XtM ) = max(h(XtM ), 0).

The following SGBM components are performed for each time step,
tm, m ≤ M, moving backwards in time, starting from tM .
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SGBM - Bundling

The grid points at tm−1 are bundled into Btm−1(1), . . . ,Btm−1(ν)
non-overlapping sets or partitions.

Several bundling techniques can be employed,

I Equal-partitioning

I k-means clustering algorithm

I recursive bifurcation

I recursive bifurcation of a reduced state space

A mapping Iβtm−1
: N[1,Nβ ] 7→ N[1,N], is defined which maps ordered

indices of paths in a bundle Btm−1(β) to the original path indices,
where Nβ := |Btm−1(β)| is the cardinality of the β-th bundle,
β = 1, . . . , ν.
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SGBM - Regression

Regress-later approach within each bundle Btm−1 (β), β = 1, . . . , ν.

A parameterized value function G̃ : Rd × RK 7→ R, which assigns values
G̃ (Xtm , α

β
tm) to states Xtm , is introduced.

The aim is to choose, for each tm and β, a vector αβtm so that

G̃
(
Xtm , α

β
tm

)
= Vtm(Xtm).

The option value is approximated as a linear combination of a finite number
of orthonormal basis functions φk as

Vtm(Xtm) ≈ Ĝ
(
Xtm , α

β
tm

)
:=

K∑
k=1

αβtm(k)φk(Xtm).

The αβtm weights are approximated using a least squares regression by

argmin
α̂βtm

Nβ∑
n=1

(
Vtm

(
Xtm

(
Iβtm−1

(n)
))
−

K∑
k=1

α̂βtm(k)φk
(
Xtm

(
Iβtm−1

(n)
)))2

.
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SGBM - Continuation and option values

The continuation values for Xtm−1(n) ∈ Btm−1(β), n = 1, . . . ,N,
β = 1, . . . , ν, are approximated by

Q̂tm−1

(
Xtm−1(n)

)
= E

[
Ĝ
(
Xtm , α

β
tm

)
| Xtm−1(n)

]
.

Exploiting the linearity of the expectation operator, it is written as

Q̂tm−1(Xtm−1(n)) =
K∑

k=1

α̂βtm(k)E
[
φk(Xtm) | Xtm−1(n)

]
.

The vector of basis functions φk should ideally be chosen such that
the expectations E

[
φk(Xtm)|Xtm−1

]
are known in closed-form, or have

analytic approximations.

The option value at each exercise time is then given by

V̂tm−1

(
Xtm−1(n)

)
= max

(
h
(
Xtm−1(n)

)
, Q̂tm−1

(
Xtm−1(n)

))
.
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Sensitivities along the paths with SGBM

Naturally, we follow a backward iteration, starting at maturity, where
the sensitivities are again trivial to calculate.

We focus on two main sensitivities of interest:

I With respect to Xtm−1 , i.e.
∂Vtm−1

(Xtm−1
)

∂Xtm−1
.

I With respect to the model parameters,
∂Vtm−1

(Xtm−1
)

∂θ .

The method requires the derivatives of the regression coefficients, α̂βtm .

Assuming minimal smoothness of the option value function V ,

∂

∂θ

(
E
[
Vtm (Xtm)

Btm

∣∣∣∣Xtm−1

])
= E

[
∂

∂θ

(
Vtm (Xtm)

Btm

)∣∣∣∣Xtm−1

]
.
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Delta along the paths

Delta is the sensitivity of the option value at tm−1 w.r.t. Xtm−1 ,

∂Vtm−1 (Xtm−1 )

∂Xtm−1

=

(
∂h
(
Xtm−1

)
∂Xtm−1

)
1Qtm−1

<h(Xtm−1 )

+

(
∂Qtm−1

(
Xtm−1

)
∂Xtm−1

)
1Qtm−1

≥h(Xtm−1 ).

The derivative of the immediate payoff, h, is usually easy to compute.

The computation of the sensitivity of the continuation value function

∂Q̂tm−1 (Xtm−1 (n))

∂Xtm−1

=
∂

∂Xtm−1

(
K∑

k=1

α̂βtm(k)E
[
φk(Xtm) | Xtm−1 (n)

])

=
K∑

k=1

(
∂α̂βtm(k)

∂Xtm−1

E
[
φk(Xtm) | Xtm−1 (n)

]
+ α̂βtm(k)

∂

∂Xtm−1

E
[
φk(Xtm) | Xtm−1 (n)

])
.
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Delta along the paths

∂
∂Xtm−1

E
[
φk(Xtm) | Xtm−1(n)

]
is readily computed.

The derivative of the regression coefficients is the difficult part.

Let us first define matrix Aβtm as

Aβtm :=



φ1(Xtm (Iβtm−1
(1))) φ2(Xtm (Iβtm−1

(1))) . . . φK (Xtm (Iβtm−1
(1)))

φ1(Xtm (Iβtm−1
(2))) φ2(Xtm (Iβtm−1

(2))) . . . φK (Xtm (Iβtm−1
(2)))

...
...

. . .
...

φ1(Xtm (Iβtm−1
(Nβ))) φ2(Xtm (Iβtm−1

(Nβ))) . . . φK (XtmI
β
tm−1

((Nβ)))


,

where Xtm(Iβtm−1
(1)), . . . ,Xtm(Iβtm−1

(Nβ)) are the states of the paths
in bundle Btm−1(β).

The corresponding vector of option values for these paths

Vβtm :=


V̂tm (Xtm (Iβtm−1

(1)))

V̂tm (Xtm (Iβtm−1
(2)))

...

V̂tm (Xtm (Iβtm−1
(Nβ)))

 .
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Delta along the paths

The least squares coefficients computation can be written as:

α̂βtm = (Aβtm
>
Aβtm)−1(Aβtm

>
)Vβtm .

The derivative of the regression coefficients is then given by

∂αβtm
∂Xtm−1

=
∂(Aβtm

>
Aβtm)−1

∂Xtm−1

(Aβtm
>

)Vβtm

+ (Aβtm
>
Aβtm)−1 ∂A

β
tm

>

∂Xtm−1

Vβtm

+ (Aβtm
>
Aβtm)−1(Aβtm

>
)
∂Vβtm
∂Xtm−1

,

The derivative of the matrix inverse can be further expanded as

∂(Aβtm
>
Aβtm)−1

∂Xtm−1

= −(Aβtm
>
Aβtm)−1

(
∂Aβtm

>

∂Xtm−1

Aβtm + Aβtm
> ∂Aβtm
∂Xtm−1

)
(Aβtm

>
Aβtm)−1
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Delta along the paths

So, to compute
∂αβtm
∂Xtm−1

, we need the quantities
∂Aβtm
∂Xtm−1

and
∂Vβtm
∂Xtm−1

.

The derivative of the regression matrix reads

∂Aβtm
∂Xtm−1

=



∂φ1(Xtm (Iβtm−1
(1)))

∂Xtm

∂Xtm (Iβtm−1
(1))

∂Xtm−1
. . .

∂φK (Xtm (Iβtm−1
1)))

∂Xtm

∂Xtm (Iβtm−1
(1))

∂Xtm−1

∂φ1(Xtm (Iβtm−1
(2)))

∂Xtm

∂Xtm (Iβtm−1
(2))

∂Xtm−1
. . .

∂φK (Xtm (Iβtm−1
(2)))

∂Xtm

∂Xtm (Iβtm−1
(2))

∂Xtm−1

...
. . .

...
∂φ1(Xtm (Iβtm−1

(Nβ )))

∂Xtm

∂Xtm (Iβtm−1
(Nβ ))

∂Xtm−1
. . .

∂φK (Xtm (Iβtm−1
(Nβ )))

∂Xtm

∂Xtm (Iβtm−1
(Nβ ))

∂Xtm−1



,

where ∂Xtm
∂Xtm−1

is obtained using the discretization scheme.

Finally,
∂Vβtm
∂Xtm−1

is given by

∂Vβtm
∂Xtm−1

=
∂Vβtm
∂Xtm

∂Xtm

∂Xtm−1

.
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Model parameter sensitivities

The sensitivity of the option value at tm−1 w.r.t θ is given by

∂

∂θ
Vtm−1(Xtm−1) =

(
∂

∂θ
h
(
Xtm−1

))
1Qtm−1<h(Xtm−1)

+

(
∂

∂θ
Qtm−1

(
Xtm−1

))
1Qtm−1≥h(Xtm−1).

Again, the payoff term is usually trivial to compute.

The derivative of the Qtm−1 for Xtm−1(n) in bundle Btm−1(β) is

∂

∂θ
Q̂tm−1(Xtm−1(n)) =

∂

∂θ

(
K∑

k=1

α̂βtm(k)E
[
φk(Xtm) | Xtm−1(n)

])

=
K∑

k=1

((
∂

∂θ
α̂βtm(k)

)
E
[
φk(Xtm) | Xtm−1(n)

]
+ α̂βtm(k)

∂

∂θ
E
[
φk(Xtm) | Xtm−1(n)

])
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Model parameter sensitivities

∂
∂θE

[
φk(Xtm) | Xtm−1(n)

]
is usually trivial to compute.

Following the same idea as before, we can write

∂αβtm
∂θ

=
∂(Aβtm

>
Aβtm)−1

∂θ
(Aβtm

>
)Vβtm

+ (Aβtm
>
Aβtm)−1∂A

β
tm

>

∂θ
Vβtm

+ (Aβtm
>
Aβtm)−1(Aβtm

>
)
∂Vβtm
∂θ

,

Similarly, we further expand the inverse derivative as

∂(Aβtm
>
Aβtm)−1

∂θ
= −(Aβtm

>
Aβtm)−1

(
∂Aβtm

>

∂θ
Aβtm + Aβtm

> ∂Aβtm
∂θ

)
(Aβtm

>
Aβtm)−1.
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Model parameter sensitivities

We now need the quantities
∂Aβtm
∂θ and

∂Vβtm
∂θ .

The derivative w.r.t parameter θ of the regression matrix is

∂Aβtm
∂θ

=



∂φ1(Xtm (Iβtm−1
(1)))

∂Xtm

∂Xtm (Iβtm−1
(1))

∂θ
. . .

∂φK (Xtm (Iβtm−1
1)))

∂Xtm

∂Xtm (Iβtm−1
(1))

∂θ

∂φ1(Xtm (Iβtm−1
(2)))

∂Xtm

∂Xtm (Iβtm−1
(2))

∂θ
. . .

∂φK (Xtm (Iβtm−1
(2)))

∂Xtm

∂Xtm (Iβtm−1
(2))

∂θ

...
. . .

...
∂φ1(Xtm (Iβtm−1

(Nβ )))

∂Xtm

∂Xtm (Iβtm−1
(Nβ ))

∂θ
. . .

∂φK (Xtm (Iβtm−1
(Nβ )))

∂Xtm

∂Xtm (Iβtm−1
(Nβ ))

∂θ



,

where ∂Xtm
∂θ is usually easy to obtain from the discretization scheme.

Since Vβtm := Vβtm(Xtm , θ), the derivative of the option price vector is

∂Vβtm
∂θ
|Ftm−1 =

∂Vβtm
∂Xtm

∂Xtm

∂θ
+
∂Vβtm
∂θ

,

where
∂Vβtm
∂Xtm

is exactly the Delta sensitivity.
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Adjoint formulation

Often monitoring dates are different from discretization time points.

For instance, when an exact discretization is not available,
intermediate simulated times need to be introduced to preserve
(increase) the accuracy.

When this occurs, the derivatives need to be propagated along the
intermediate steps.

For that, the computation of the path-level sensitivities with SGBM
admits the adjoint formulation, as described in Giles and Glasserman.

With the difference that the recursion takes place between tm, and
tm−1 in Rolling Adjoints rather than between tM , and t0, in Smoking
Adjoints.

The adjoint mode can provide a significant gain in the computational
cost when the number of inputs is large.
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Adjoint formulation - Delta sensitivity

Let tm−1 = tm0 , . . . , tml
, . . . , tmL

= tm denote the sub-discretization
between tm−1 and tm, and

∆ml
:=

∂Xtml

∂Xtml−1

=
∂Fml−1

(Xtml−1
,Ztml−1

, θ)

∂Xtml−1

.

∂φk (XtmL
)

∂XtmL

∂XtmL
∂Xtm0

,
∂VβtmL
∂XtmL

∂XtmL
∂Xtm0

are computed using the recursion

∂φk(XtmL
)

∂XtmL

∆mL
∆mL−1

. . .∆m0 ,
∂VβtmL

∂XtmL

∆mL
∆mL−1

. . .∆m0 .

Adjoint (from left to right) vs. forward (from right to left),

Adjoint
−−−−−−−−−−−−−−−−−−−−−−−→
∂φk (XtmL

)

∂XtmL

∆mL∆mL−1 . . .∆m0

∂VβtmL

∂XtmL

∆mL∆mL−1 . . .∆m0 ,

Forward←−−−−−−−−−−−−−−−−−−−−−−−
∂φk (XtmL

)

∂XtmL

∆mL∆mL−1 . . .∆m0

∂VβtmL

∂XtmL

∆mL∆mL−1 . . .∆m0 .
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Adjoint formulation - Model parameter sensitivities

We need to compute

∂φk(Xtm)

∂Xtm

∂Xtm

∂θ
, k = 1 . . . ,K .

Denoting

Θml
:=

∂Xtml

∂θ
=

∂

∂θ
Fml−1

(Xtml−1
,Ztml−1

, θ).

∂XtmL
∂θ is recursively calculated using the chain rule as

Θml
=
∂Fml−1

(Xtml−1
,Ztml−1

, θ)

∂Xtml−1

Θml−1
+
∂Fml−1

(Xtml−1
,Ztml−1

, θ)

∂θ
,

where l = 1, . . . , L, with initial condition Θm0 = 0.

This recursion admits again both the forward formulation and the
adjoint formulation.
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Numerical results

Geometric Brownian Motion, 90, 000 paths.

European, Bermudan and spread options. Two sets:

Set I

Xt0 36, 40, 44
σ 10%, 20%,40%
r 0.06

Strike K 40
M 50
T 1 year

Set II

Xt0 := {S1
t0
,S2

t0
} [100, 100]

σ := {σ1, σ2} [15% 15%]
r 0.03

Strike K 5
M 8
ρ12 0.5
T 1 year
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European option - Delta convergence in bundles
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European option - Delta convergence in basis functions
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European option - Vega convergence in bundles
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European option - Vega convergence in basis functions
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Bermudan option - Greeks at t0

Xt0 COS SGBM Error LSMC1 Error LSMC2 Error
Delta Delta (s.e.) SGBM Delta (s.e.) LSMC1 Delta (s.e.) LSMC2

36 -0.695 -0.695 -0.0001 -0.711 0.0159 -0.972 -0.2770
(0.6e-5) (0.0213) (0.227)

40 -0.404 -0.404 0.0003 -0.402 -0.0019 -0.463 -0.0591
(0.5e-5) (0.0190) (0.033)

44 -0.213 -0.214 0.0009 -0.227 0.0141 -0.253 -0.0396
(0.9e-5) (0.0080) (0.031)

Table: t0 Delta values for Bermudan put option on a single asset for different initial
asset prices. The values in brackets are the standard errors from thirty trials.

Xt0 COS SGBM Error LSMC1 Error LSMC2 Error
Vega Vega (s.e.) SGBM Vega (s.e.) LSMC1 Vega (s.e.) LSMC2

36 10.955 10.920 -0.0348 11.099 0.1445 10.734 -0.2209
(0.001) (0.070) (0.231)

40 14.747 14.752 0.0049 14.890 0.1438 14.730 -0.0170
(0.001) (0.099) (0.057)

44 12.524 12.616 0.0924 12.556 0.0318 12.536 0.0126
(0.003) (0.062) (0.051)

Table: t0 Vega values for Bermudan put option on a single asset for different initial
asset prices. The values in brackets are the standard errors from thirty trials.
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Bermudan option - Greeks at t0

σ COS SGBM Error LSMC1 Error LSMC2 Error
Vega Vega (s.e.) SGBM Vega (s.e.) LSMC1 Vega (s.e.) LSMC2

10% 13.360 13.402 0.0416 13.526 0.1652 13.285 -0.0754
(0.002) (0.062) (0.066)

20% 14.747 14.750 0.0034 14.931 0.1841 14.730 -0.0170
(0.001) (0.084) (0.057)

40% 15.055 15.053 -0.0019 15.188 0.1336 15.115 0.0598
(0.002) (0.104) (0.087)

Table: t0 Vega values for Bermudan put option on a single asset for different asset
volatilities. The initial asset value is Xt0 = 40.

Xt0 COS SGBM Error LSMC1 Error LSMC2 Error
Vega Vega (s.e.) SGBM Vega (s.e.) LSMC1 Vega (s.e.) LSMC2

34.5 6.794 6.757 -0.0372 7.062 0.2677 6.866 0.0719
(0.0008) (0.212) (0.433)

35 8.383 8.342 0.0414 8.621 0.2374 8.076 -0.3075
(0.001) (0.119) (0.149)

35.5 9.771 9.731 0.0397 10.224 0.4529 9.450 -0.3206
(0.001) (0.103) (0.161)

Table: t0 Vega values for Bermudan put option on a single asset for a case where the
initial asset price is close to the early-exercise boundary, Xt0 = 34.5.
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Bermudan spread option - Greeks at t0

SGBM SGBM LSMC1 LSMC2
extended Delta (s.e) BR Delta (s.e) BR Delta (s.e.) BR Delta (s.e.)

∂Vt0

∂S1
t0

0.4020 0.4021 0.4029 0.4570
(0.2e-4) (0.1e-3) (0.011) (0.083)

∂Vt0

∂S2
t0

-0.3448 -0.3453 -0.3446 -0.3795
(0.2e-4) (0.1e-3) (0.010) (0.085)

Table: t0 Delta values for Bermudan spread option on two assets.

SGBM SGBM LSMC1 LSMC2
extended Vega (s.e) BR Vega (s.e) BR Vega (s.e.) BR Vega (s.e.)

∂Vt0

∂σ1

20.6082 20.7551 20.4900 20.5136
( 0.016) (0.025) (0.124) (0.198)

∂Vt0

∂σ2

16.8822 17.0611 17.0022 17.1409
(0.013) (0.017) (0.089) (0.155)

Table: Vega t0 values for Bermudan spread option on two assets.

Case SGBM extended SGBM BR LSMC1 BR LSMC2 BR
Single Asset (50 monitoring dates) 4.5s 10s 2s 4.2s

Two Asset (8 monitoring dates) 3s 12s 4s 7s

Table: The computational time of 30 trials.
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Conclusions

We have presented an approach to compute sensitivities w.r.t state
space and model parameters along the path for early-exercise options.

The approach is applicable to regress-later schemes like SGBM.

Through the examples we numerically illustrate study the convergence
of the method and demonstrate the stability of the method.

The sensitivities along the paths are computed without significant
computational and memory overhead.

Future work:

I Compute MVA for SIMM based initial margins.

I Sensitivities in energy market complex options.
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Bonus

Residual errors.

Basic European option experiment.

Influence of bundling on regress-later approaches.
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European option - Deltas along the paths

(a) t = 0.02 (b) t = 0.4

(c) t = 0.7 (d) t = 0.98
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European option - Vega along the paths

(e) t = 0.02 (f) t = 0.4

(g) t = 0.7 (h) t = 0.98
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European option - Greeks at t0

Xt0 SGBM BS error SGBM BS error SGBM BS error
Delta (s.e.) Delta Vega (s.e.) Vega Gamma (s.e.) Gamma

36 -0.5504 -0.5504 0.1e-4 14.2526 14.2469 0.0057 0.0550 0.0550 -0.03e-4
(0.2e-5) (0.0005) (0.2e-5)

40 -0.3445 -0.3445 0.1e-4 14.7399 14.7308 0.0091 0.0460 0.0460 -0.06e-4
(0.1e-5) (0.0006) (0.2e-5)

44 -0.1903 -0.1903 0.4e-4 11.9702 11.9542 0.0160 0.0309 0.0309 -0.12e-4
(0.4e-5) (0.0007) (0.2e-5)

Table: The t0 Delta, Vega, and Gamma values computed using SGBM. The values in
brackets are corresponding standard errors for SGBM for 30 trials.
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Bundling on regress-later approaches

Figure: Basic regress-later vs. SGBM. Local errors in continuation and option
values at tM−1. The different colors indicate different regions. K = 1.
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Bundling on regress-later approaches

Figure: Basic regress-later vs. SGBM. Local errors in continuation and option
values at tM−1. The different colors indicate different regions. K = 6.
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