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Motivation

In a financial institution, portfolio credit risk represents one of the
most important sources of risk.

The well-known VaR and ES risk measures are usually employed.

Besides, the decomposition of the total risk into the individual risk
contribution of each obligor is a problem of practical importance.

Identification of risk concentrations, portfolio optimization or capital
allocation are, among others, relevant examples of application.

The problem of obtaining the risk contributions represents a great
challenge from the computational standpoint.

Commonly in practice: Monte Carlo methods. Easy to implement and
understand, and attractive for practitioners, but rather expensive.
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What we propose

An alternative approach for computing risk contributions based on
non-parametric density estimation based on wavelets.

Once the density function of the loss variable is recovered, we derive
closed-form solutions for VaR and ES.

According to the Euler’s capital allocation principle, the risk
contributions can be calculated by taking partial derivatives of the
risk measures (VaR or ES) w.r.t. the individual exposures.

Thanks to the wavelet properties, these partial derivatives can be
efficiently computed, obtaining high precision.

The presented methodology is model-free, in the sense that it applies
in the same manner regardless of the model driving the losses.
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Problem formulation

Let us consider a portfolio consisting in N obligors.

Each obligor j is characterized by the exposure at default, Ej , the
probability of default, Pj , and the loss given default, 100%.

We follow the framework of Merton’s firm-value model.

Let Vj(t) denote the firm value of obligor j at time t < T , where T is
the time horizon (typically one year).

The obligor j defaults when its value at the end of the observation
period, Vj(T ), falls below a certain threshold, τj , i.e, Vj(T ) < τj .

We can therefore define the default indicator as Dj = 1{Vj (T )<τj}.

Given Dj , the individual loss of obligor j is defined as,

Lj = Dj · Ej ,

while the total loss in the portfolio reads,

L =
N∑
j=1

Lj .
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Factor models

The firm (obligor) value Vj is split into two terms: one common
component called systematic factor, and an idiosyncratic
component for each obligor.

Depending on the number of factors of the systematic part, the
model can be classified into the one- or multi-factor class.

One-factor models: Gaussian copula and t-copula

Vj =
√
ρjY +

√
1− ρjεj , Vj =

√
ν

W

(√
ρjY +

√
1− ρjεj

)
,

where ε1, · · · , εN ,Y ∼ N (0, 1), W follows a chi-square distribution
χ2(ν) with ν degrees of freedom and ε1, · · · , εN , Y and W are
mutually independent. The parameters ρ1, · · · , ρj ∈ (0, 1) are the
correlation coefficients.
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Factor models

When we need to capture complicated correlation structures, extend
the previous models to multiple dimensions.

Multi-factor models:

Vj = a
T
j Y + bjεj , j = 1, · · · ,N.

where Y = [Y1, Y2, . . . ,Yd ]T denotes the systematic risk factors.
Here, aj = [aj1, aj2, . . . , ajd ]T represents the factor loadings satisfying
a
T
j aj < 1, and bj , being the factor loading of the idiosyncratic risk

factor, bj =

√
1−

(
a2
j1 + a2

j2 + · · ·+ a2
jd

)
, ensuring Vj ∼ N (0, 1).

Similarly, the multi-factor t-copula model definition reads,

Vj =

√
ν

W

(
a
T
j Y + bjεj

)
, j = 1, · · · ,N,

where Y , εj , aj and bj are defined as before, with W ∼ χ2(ν).
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Risk measures

We will use two well-known measures of risk, the value-at-risk, VaR,
and the expected shortfall, ES.

Definition

Given a confidence level α ∈ (0, 1) and the vector of exposures
E = [E1,E2, . . . ,EN ]T , we define the portfolio VaR,

VaRα(E ) = inf{l ∈ R : P(L ≤ l) ≥ α} = inf{l ∈ R : FL(l ;E ) ≥ α},

where FL is the distribution function of the total loss random variable L
(we emphasize the dependence of VaR with respect to the risk exposures).
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Risk measures

Definition

Given the loss variable L with E[|L|] <∞ and distribution function FL, the
ES at confidence level α ∈ (0, 1) is defined as,

ESα(E ) =
1

1− α

∫ 1

α
VaRu(E )du.

When the loss variable is integrable with continuous distribution
function, then the ES satisfies the equation,

ESα(E ) = E[L|L ≥ VaRα(E )],

or, in integral form,

ESα(E ) =
1

1− α

∫ +∞

VaRα(E)
xfL(x ;E )dx ,

where fL is the probability density function of the total loss random
variable L.
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Risk contributions

The goal is allocating the risk to the elements of the portfolio, based
on their individual contribution to the risk measure.

This problem is also known as capital allocation and a solution to this
problem is the Euler’s capital allocation principle, which states

N∑
j=1

Ej
∂VaRα
∂Ej

(E ) = VaRα(E ), and,
N∑
j=1

Ej
∂ESα
∂Ej

(E ) = ESα(E ).

The contribution of obligor j to the VaR (ES) at confidence level α,

VaRCα,j := Ej
∂VaRα
∂Ej

(E ), and, ESCα,j := Ej
∂ESα
∂Ej

(E ).

It can be shown that,

VaRCα,j = E [Lj |L = VaRα(E )] , j = 1, . . . ,N,

and,
ESCα,j = E [Lj |L ≥ VaRα(E )] , j = 1, . . . ,N.
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Non-parametric density estimation by wavelets

Given i.i.d samples from an unknown statistical distribution X .

Apply the wavelet theory to approximate the density function fX .

We consider the so-called linear wavelet estimator (or simply linear
estimator),

fX (x) ≈
∑
k

cm,kφm,k(x),

where k varies within a finite range and φm,k(x) = 2m/2φ(2mx − k).
The function φ is usually referred to as the scaling function or
father wavelet.

The coefficients cm,k are, by definition, given by,

cm,k := 〈fX , φm,k〉 =

∫
R
fX (x)φ̄m,k (x)dx = E

[
φ̄m,k (X )

]
.

The last equality comes from the fact that fX is a density function.
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Application to the loss distribution

Estimate the density function of the loss variable L by means of the
wavelet estimator.

Generate n samples of the default indicator variable, D i
j , of obligor j

and sample i , where i = 1, . . . , n, j = 1 . . . ,N. Then, Lij = D i
j · Ej .

Denote by Li the corresponding samples Li =
∑N

j=1 L
i
j .

For convenience, we consider the transformation Z = L−a
b−a , and we

define Z i = Li−a
b−a , i = 1, . . . , n, where,

a = min
1≤i≤n

(
Li
)
, b = max

1≤i≤n

(
Li
)
.

From the definition, we can obtain the following unbiased estimator
for the wavelet series coefficients,

cm,k = E
[
φ̄m,k (Z )

]
≈ 1

n

n∑
i=1

φm,k(Z i ) =: ĉm,k .
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Application to the loss distribution

Using the wavelet density estimation, the unknown density fL of L can
be approximated as follows,

fL(x ;E ) ≈ f̂L(x ;E ) :=
1

b − a

K∑
k=0

ĉm,kφm,k

(
x − a

b − a

)
,

where, by construction, the lower bound for index k is equal to zero
and the upper limit is K = 2m − 1.

Applying the definition, the distribution function of L can be
estimated by

FL(x ;E ) :=

∫ x

−∞
fL(y ;E )dy

≈ 1

b − a

K∑
k=0

ĉm,k

∫ x

a
φm,k

(
y − a

b − a

)
dy =: F̂L(x ;E ).
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Computation of risk measures

The VaR value is obtained by using a root-finding method to solve
the following equation,

F̂L(x ;E ) = α,

where F̂L(x ;E ) is the approximation and α is the confidence level.

Analogously, we use the wavelet approximation of the density, f̂L in
the ES,

ESα(E ) ≈ 1

1− α

∫ b

VaRα(E)
xf̂L(x ;E )dx ,

and we get the estimation

ESα(E ) ≈ 1

1− α
1

b − a

K∑
k=0

ĉm,k

∫ b

VaRα(E)
xφm,k

(
x − a

b − a

)
dx .

It is worth remarking that the VaR value can be obtained directly
from the samples generated by Monte Carlo simulation and the ES
can be consequently computed a well.
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Computation of risk contributions

The risk contributions (VaRC and ESC) will be calculated by
following the Euler’s capital allocation principle.

Recalling the expression above, the VaR value satisfies,

F̂L(VaRα(E );E ) = α,

Differentiating we obtain the risk contributions to the VaR

VaRCα,j = Ej
∂VaRα
∂Ej

(E )

= −Ej

∂F̂L
∂Ej

(VaRα(E );E )

∂F̂L
∂x (x ;E )|x=VaRα(E)

= −Ej

∂F̂L
∂Ej

(VaRα(E );E )

f̂L(VaRα(E );E )
.
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Computation of risk contributions

If we now integrate by parts the expression for the ES,

ESα(E ) ≈ 1

1− α

(
b − αVaRα(E )−

∫ b

VaRα(E)
F̂L(x ;E )dx

)
.

By taking partial derivatives w.r.t. Ej , the risk contributions to the
ES are

ESCα,j = Ej
∂ESα
∂Ej

(E )

=
1

1− α
Ej

(
−α∂VaRα

∂Ej
(E ) +

∂VaRα
∂Ej

(E )F̂L (VaRα(E );E )

−
∫ b

VaRα(E)

∂F̂L
∂Ej

(x ;E ) dx

)

= − 1

1− α
Ej

∫ b

VaRα(E)

∂F̂L
∂Ej

(x ;E ) dx .
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Computation of risk contributions

The VaRC and ESC expressions require the partial derivative of the

distribution function w.r.t. the exposures, ∂F̂L(x ;E)
∂Ej

.

F̂L depends on Ej only through the coefficients ĉm,k , then

∂F̂L
∂Ej

(x ;E ) =
∂

∂Ej

(
1

b − a

K∑
k=0

ĉm,k

∫ x

a
φm,k

(
y − a

b − a

)
dy

)

=
1

b − a

K∑
k=0

∂ĉm,k
∂Ej

∫ x

a
φm,k

(
y − a

b − a

)
dy .

The partial derivative of the coefficients (assuming φ differentiable),

∂ĉm,k
∂Ej

=
∂

∂Ej

(
1

n

n∑
i=1

φm,k(Z i )

)
=

1

n

n∑
i=1

∂φm,k
∂Ej

(Z i )

=
23m/2

b − a

1

n

n∑
i=1

D i
jφ
′(2mZ i − k).
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Families of wavelets

Haar wavelets. The Haar scaling function reads,

φ(x) =

{
1, 0 ≤ x < 1,

0, otherwise.

whose “derivative”

φ′(x) = δ(x)− δ(x − 1) ≈ s

π (x2 + s2)
− s

π ((x − 1)2 + s2)
,

where δ is the Dirac delta, and s → 0 controls the approximation.
Shannon wavelets. The Shannon scaling function reads,

φ(x) = sinc(x) =

{
sin(πx)/(πx), if x 6= 0,

1, if x = 0,

where sinc(x) is usually called cardinal sine function. Its derivative is

φ′(x) =


cos(πx)

x
− sin(πx)

x2π
, if x 6= 0,

0, if x = 0.
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Optimal scale of approximation m

As usual in density estimation, the optimal convergence rate is
achieved by balancing the components within the error.
The Mean Integrated Squared Error (MISE) is commonly
employed.
This error can be split into two terms, bias and variance, which
present an opposite behavior.
The MISE is defined as,

MISE =

∫
R
E
[(

f̂L(x ;E )− fL(x)
)2
]
dx ,

where f̂L is the estimated density and fL is the true density function.
The difference in the MISE between two consecutive levels of
resolution, at scale m (em) and at scale m − 1 (em−1) is

em−em−1 ≈
1

n2

n∑
i=1

K∑
k=0

φ2
m,k

(
Z i
)
− n + 1

n

K∑
k=0

(
1

n

n∑
i=1

ψm−1,k

(
Z i
))2

,

where ψm,k(x) = 2m/2ψ(2mx − k) and ψ the mother wavelet.
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Optimal scale of approximation m

1 2 3 4 5 6 7 8
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Numerical experiments

Computation of the quantities VaRCα,j and ESCα,j , ∀j , focusing on
accuracy, robustness and efficiency of our methodology.

Computer system characteristics: CPU Intel Core i7-4720HQ 2.6GHz
and 16GB RAM.

The numerical codes have been implemented in C programming
language: GNU Scientific Library (GSL).

The confidence level, α, is set to 99%, and the number of samples is
n = 105, for all the experiments.

References: WA method [2] and Monte Carlo.

Two portfolios:

Portfolio N Pj Ej

P1 10000 0.08 1
j

P2 25000 0.05 1
j

Table: Portfolio configurations.
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Comparison: Haar versus Shannon

(a) Haar. (b) Shannon.

Figure: Estimation of the densities for portfolio P1 with Haar (left plot) and
Shannon (right plot).
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Comparison: Haar versus Shannon

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08
WA (reference)

Haar, s = 10-1

Haar, s = 10-2

Haar, s = 10-3

Shannon

(a) VaR contributions.
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Haar, s = 10-3
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(b) ES contributions.

Figure: Portfolio P1: risk contributions (j = 1, . . . , 10).
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Comparison: Haar versus Shannon

(a) VaR contributions. (b) ES contributions.

Figure: Portfolio P2: risk contributions (j = 1, . . . , 25).
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Comparison: Haar versus Shannon

Portfolio P1 Portfolio P2∑
VaRCα,j

∑
ESCα,j

∑
VaRCα,j

∑
ESCα,j

WA (m = 10) 0.3227 0.3658 0.2153 0.2429

Haar (s = 0.1) 0.2667 0.3440 0.1847 0.2315

Haar (s = 0.01) 0.4016 0.4684 0.1762 0.2799

Haar (s = 0.001) 0.6411 0.4236 0.0753 0.1599

Shannon 0.3236 0.3681 0.2091 0.2457

Table: Influence of the steepness parameter s, in the Haar-based data-driven
approximation.
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Comparison: Shannon versus crude Monte Carlo simulation
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(a) nMC = 106.
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(b) nMC = 107.

Figure: VaR contributions (VaRC) with Monte Carlo varying ε. Portfolio P1.
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Comparison: Shannon versus crude Monte Carlo simulation

(a) nMC = 106. (b) nMC = 107.

Figure: VaR contributions (VaRC) with Monte Carlo varying ε. Portfolio P2.
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Experiments on multi-factor models
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(a) nMC = 106.
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(b) nMC = 107.

Figure: Multi-factor Gaussian copula: VaR contributions portfolio P1 and d = 5.
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Experiments on multi-factor models
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Figure: Multi-factor Gaussian copula: VaR contributions for portfolio P1 and
d = 25.
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Experiments on multi-factor models
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Figure: Multi-factor t-copula: VaR contributions for portfolio P1 and d = 5.
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Experiments on multi-factor models
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Figure: Multi-factor t-copula: VaR contributions for portfolio P1 and d = 25.
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Computational performance

d = 5 (m = 7) d = 25 (m = 7)

Method Samples Time Speed-up Time Speed-up

Shannon n = 105 90 ×1 91 ×1

MC nMC = 106 3330 ×37 9759 ×107

MC nMC = 107 33260 ×370 99252 ×1091

Table: Time and speed-up: multi-factor Gaussian copula model. Portfolio P1.

d = 5 (m = 8) d = 25 (m = 8)

Method Samples Time Speed-up Time Speed-up

Shannon n = 105 210 ×1 213 ×1

MC nMC = 106 3181 ×15 10376 ×49

MC nMC = 107 33135 ×158 99932 ×469

Table: Time and speed-up: multi-factor t-copula model. Portfolio P2.
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Conclusions

We have investigated the computation of risk contributions to VaR
and ES in a credit portfolio by means of non-parametric density
estimation based on wavelets, particularly Haar and Shannon.

While the Haar family has desirable properties like compact support
and positiveness, we finally prefer the Shannon family due to its
robustness and easy handling.

We have intensively tested our method, considering one- and
multi-factor Gaussian and t-copula models and two different
portfolios.

Our methodology turns out to be a robust, accurate and efficient
alternative to Monte Carlo methods, commonly used in practice.

To the best of our knowledge, this is the first time that this approach
is followed for solving the capital allocation problem by means of
Euler’s capital allocation principle.
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Multi-factor models

The incentive for considering the multi-factor version of the Gaussian
copula model becomes clear when one rewrites it in matrix form,

V1

V2
...

VN

 =


a11

a21
...

aN1

Y1+


a12

a22
...

aN2

Y2+· · ·+


a1d

a2d
...

aNd

Yd+


b1ε1

b2ε2
...

bNεN

 .
While each εj represents the idiosyncratic factor affecting only obligor
j , the common factors Y1,Y2 . . . ,Yd , may affect all (or a certain
group of) obligors.

Although the systematic factors are sometimes given economic
interpretations (as industry or regional risk factors, for example), their
key role is that they allow us to model complicated correlation
structures in a non-homogeneous portfolio.
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Mother wavelets

Here we present the definition of the mother wavelet functions for
both Haar and Shannon families. Thus, in the case of Haar basis, the
mother wavelet reads,

ψ(x) :=


1, 0 ≤ x <

1

2
,

− 1,
1

2
≤ x < 1,

0, otherwise,

while the Shannon mother wavelet is defined as,

ψ(x) :=
sin
(
π
(
x − 1

2

))
− sin

(
2π
(
x − 1

2

))
π
(
x − 1

2

) = 2sinc(2x−1)−sinc(x).
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