
Quantum computing for computational finance

Review of promising algorithms for pricing and Var
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Motivation

• Quantum computers could bring unparalleled competitive advantage

to financial companies in areas like portfolio optimisation, option

pricing, quantitative risk management or Machine Learning models.

• Quantum computers are able to handle exponentially growing (in

qubits) Hilbert spaces.

• Thus, quantum computing becomes an attractive framework for

calculations over large multi-dimensional domains.

• Quantum algorithms could potentially overcome their classical

counterparts in dealing with combinatorial explosions and the curse

of dimensionality.

• However, bringing this to practice encounters several bottlenecks,

especially with the current or near-term quantum technologies

(NISQ).

2



Disclaimer

• Quantum computing literature is experiencing an explosion: This

presentation incorporates only a few of the current trends.

• The selection of the addressed topics reflects only my view

(interests) within the vast scope of the computational finance field.

• Then, many important topics are not addressed here: optimization,

time series, blockchain, cryptography, etc.

• There might be inconsistencies or certain abuse in the

(mathematical and/or quantum) notation. In some cases, that is

intentional, for the sake of clarity. In others...sorry in advance!
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Quantum Computing basics



Quantum Computing basics (I)

• The basic unit of information is the qubit (alternatively to the bit).

• A qubit is represented by a (column) vector:(
α

β

)
with the amplitudes α, β ∈ C and |α|2 + |β|2 = 1.

• Basis states:

|0⟩ =

(
1

0

)
, |1⟩ =

(
0

1

)
• {|0⟩ , |1⟩} is a computational basis for a quantum state:

|ψ⟩ = α |0⟩+ β |1⟩

• When measuring the state:

• get 0 with probability |α|2

• get 1 with probability |β|2

• So, measurement ≡ distribution sampling
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Promising Quantum Algorithms

for pricing (and risk measures)



Quantum Monte Carlo
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Quantum Monte Carlo (QMC)

The quantum-accelerated Monte Carlo could potentially/theoretically

provide a quadratic speedup for option pricing and risk measures

calculation [Gómez et al., 2022].

How? Quantum Amplitude Estimation.

Monte Carlo methods in finance can be informally defined as

1

M

M−1∑
i=0

f (Xi ) ≈ E[f (X )] =

∫
f (x)p(x)dx ≈

N−1∑
j=0

f (xj)p(xj)

where p(x) is a density function.

Analogously, Quantum Monte Carlo (QMC) assumes a state of the form

|ψ⟩ = |0⟩ ⊗
N−1∑
j=0

f (xj)p(xj) |j⟩+ |1⟩ ⊗
N−1∑
j=0

√
1− f 2(xj)p(xj) |j⟩

where the quantity of interest is encoded in the state’s amplitude.
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QMC: Quantum Amplitude Estimation

Given a state:

|ψ⟩ = a |ϕ⟩+
√
1− a2

∣∣ϕ⊥〉 ,
Quantum Amplitude Estimation (QAE) is an algorithm which gives an

estimation â± ϵ

2
of the amplitude a.

This technique promises to obtain a quadratic speedup over its

classical counterpart.

To achieve so, it relies on two main subroutines:

• Grover (search) amplification.

• Quantum Phase Estimation.
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QMC: Quantum Amplitude Estimation (circuit)

Figure 1: Quantum Amplitude Estimation
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QMC: Quantum Amplitude Estimation (convergence)

Theorem (Mean estimation for [0, 1] bounded functions

[Montanaro, 2015])
Let there be given a quantum circuit P on n qubits. Let v(P) be the random

variable that maps to v(x) ∈ [0, 1] when the bit string x is measured as the

output of P. Let R be defined as

R|x⟩ |0⟩ = |x⟩
(√

1− v(x) |0⟩ −
√

v(x) |1⟩
)
.

Let |X ⟩ be defined as |X ⟩ = R(P ⊗ I2)
∣∣0n+1

〉
. Set U = I2n+1 − 2 |X ⟩ ⟨X |.

There exists a quantum algorithm that uses O(log 1/δ) copies of the state X ,

uses U for a number of times proportional to O(m log 1/δ) and outputs an

estimate µ̂ such that

|µ̂− E[v(P])| ≤ C

(√
E[v(P)]

m
+

1

m2

)
,

with probability at least 1− δ, where C is a universal constant. In particular,

for any fixed δ > 0 and any ϵ such that 0 < ϵ ≤ 1, to produce an estimate µ̂

such that, with probability at least 1− δ, |µ̂− E[v(P)]| ≤ ϵE[v(P)], it suffices

to take m = O
(
(ϵE[v(P)])−1

)
. To achieve |µ̂− E[v(P)]| ≤ ϵ with probability

at least 1− δ, it suffices to take m = O
(
ϵ−1
)
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QMC: variations on QAE

Plain QAE is not feasible in NISQ era, due to the use of a Quantum

Fourier Transform (QFT).

Algorithm Performance

Monte Carlo NMC
A ∼ O

(
1
ϵ2p

)
QPE[Brassard et al., 2002] NQPE

A ∼ O
(

1
ϵp

)
MLAE-LIS[Suzuki et al., 2020] NLIS

A ∼ O
(
ϵ
−4/3
p

)
MLAE-EIS[Suzuki et al., 2020] NEIS

A ∼ O
(

1
ϵp

)
PLAE[Giurgica-Tiron et al., 2020] NPLAE

A ∼ O

 1

ϵ
1+β
p

, d ∼ O

 1

ϵ
1−β
p


Improved MLAE[Callison and Browne, 2022] N

imp EIS
A ∼ O

(
1
ϵp

1
d

log
(

1
γ

))
, d = 2q−2

IQAE [Grinko et al., 2021] NIQAE
A < 50

ϵp
log

(
2
γ

log2
π
4ϵp

)
mIQAE[Fukuzawa et al., 2023] NmIQAE

A < 123
ϵp

log 6
γ

QCoin [Abrams and Williams, 1999] NQCoin
A ∼ O

(
1
a

1
ϵp

log 1
γ

)
, k ≥ 2, 1 ≥ q ≥ (k − 1)

QoPrime [Giurgica-Tiron et al., 2020] NQoPrime
A < C⌈ k

q
⌉ 1

ϵ
1+q/k
p

log
(

4
γ

⌈ k
q
⌉
)
, d ∼ O

 1

ϵ
1−q/k
p


FasterAE [Nakaji, 2020] NfasterAE

A < 4.1·103
ϵp

log

(
4
γ

log2

(
2π
3ϵp

))
AdaptiveAE [Zhao et al., 2022] N

adaptiveAE
A < O

(
1
ϵp

log

(
π2(T+1)

3γ

))
, T = ⌈

log π
Kϵp

log K
⌉

RQAE [Manzano et al., 2023b] NRQAE
A <

C1(q)
ϵa

log

[
3.3
γ

logq

(
C2(q)
ϵa

)]
mRQAE [Ferro and Manzano, 2024] NMRQAE

A <
C1(q)
ϵa

log

[
C2(q)
γ

]

Table 1: Performance of the different AE algorithms presented. NA denotes

the number of calls (or queries) to the operator A, ϵa is the target precision

and 1− γ is the confidence level. Other parameters appearing in the table are

related to each specific algorithm. For a full description of their meaning the

reader is refered to the associated references. The ∼ symbol indicates that the

algorithm has an asymptotic behaviour, while the < indicates that the

performance is proved rigorously.
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Quantum PDE solvers
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Quantum PDE solvers

Figure 2: Classification of quantum PDE solvers.
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Quantum approaches for Black-Scholes PDE

Some financial PDEs can be mapped into the propagation governed by a

Hamiltonian [Gonzalez-Conde et al., 2021, Fontanela et al., 2021].

Applying the change of variable S = ex on the Black-Scholes eq.,

∂V

∂t
+

(
µ− σ2

2

)
∂V

∂x
+
σ2

2

∂2V

∂x2
− µV = 0 ,

which can be written as a Schrödinger-like equation,

∂V

∂t
= −i ĤBS V ,

where

ĤBS = i
σ2

2
p̂2 −

(
σ2

2
− µ

)
p̂ + iµI , with p̂ = −i

∂

∂x
.

The Hamiltonian ĤBS is not Hermitian.

Therefore, the associated evolution operator Û(t, t0) = e−i ĤBS(t−t0) is not

unitary.
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PDEs: Real-time propagation

• To implement Û(t, t0), consider an enlarged system, i.e. a doubled

unitary operator [Gonzalez-Conde et al., 2021].

• Require of adding an auxiliary qubit.

• ĤBS is diagonal in momentum space → diagonal operator → QFT

(and Inverse QFT) → exponential speedup.

• But, an overall exponential speedup requires efficient loading of the

model and payoff function.

• Again, QFT (IQFT) is gate-wise demanding (incompatible NISQ).
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PDEs: Real-time propagation (solution)

• The algorithm achieves a high degree of agreement in a

fault-tolerant quantum computer...

• ...but with a 60% success probability in the measurement and

post-selection (depending on the financial parameters).

• Not tested in a real NISQ quantum system.

(a) Boundary error without duplication. (b) Convergence in qubits (point).
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PDEs: Imaginary-time propagation

• Additional change of variable τ = σ2(T − t) and transformation

v(x , τ) = exp(−ax − bτ)V (t, s), with suitable constants a and b,

∂v

∂τ
=

1

2

∂2v

∂x2
.

• Using the Wick rotation τ̃ = −iτ (real time to imaginary time), the

heat equation turns into a Schrödinger-like equation,

∂v

∂τ̃
= −ĤHE v ,

where

ĤHE = − i

2
q̂2 , with q̂ = −i

∂

∂x
.

• This leads to a purely anti-Hermitian Hamiltonian operator.

• Imaginary-time propagation transforms oscillations into dampings.

• Problem of finding the ground state of quantum systems, well

investigated in condensed matter physics and chemistry.

• The imaginary time evolution operator is approximated by an ansatz

circuit in [Fontanela et al., 2021].
17



PDEs: Imaginary-time propagation (solution)

• The solution is retrieved by a hybrid quantum-classical algorithm:

(c) Prices of European option. (d) Errors of European option.
18



Quantum Machine/Deep

Learning



Quantum Machine/Deep Learning

• (Quantum) Principal Component Analysis:

• Eigenvalues by QPE [Nielsen and Chuang, 2001].

• Covariance matrix → density matrix (QPCA)

[Lloyd et al., 2014, Abhijith et al., 2020].

• (Quantum) Regression:

• Solving linear systems by the HHL algorithm [Wiebe et al., 2012].

• Quantum Kernel Estimation [Egger et al., 2020].

• Quantum regression with Gaussian processes [Zhao et al., 2019].

• Hybrid classical-quantum deep learning:

• Training in QC (quantum annealing) [Adachi and Henderson, 2015].

• Quantum-enhanced reinforcement learning [Saggio et al., 2021].

• Quantum GANs [Nakaji et al., 2021].

• Boltzman machines → Born machines

[Vinci et al., 2020, Alcazar et al., 2020].

• Full Quantum Neural Network (QNN):

• ANNs based on the principles of quantum mechanics [Kak, 1995].

• How to train QNN? See [Beer et al., 2020, Coyle et al., 2021].

• Promising approach: Parametrized Quantum Circuits 19



Parametrized Quantum Circuits (PQCs)

• Also known as variational circuits or quantum circuit learning.

• First theoretical results on accessibility, expressivity and universality.

• Circuits with both fixed and adjustable (“parametrized”) gates.

• The training is carried out by a classical optimiser.

• Each layer composed by a trainable circuit block Wi (θ) and a

data-encoding block S(x):

Figure 3: Parametrized Quantum Circuit.
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PQCs: trigonometric series

• A PQC model can be written as a generalized trigonometric series:

E[M] = ⟨0|U†(x ;θ)MU(x ;θ) |0⟩ = f (x;θ) =
∑
ω∈Ω

cω(θ)e
iωx ,

where M is an observable, U(x ;θ) is a quantum circuit that depends

on inputs x = (x0, x1, ..., xN) and the parameters θ = (θ0, θ1, ..., θT ).

• Accessibility: with Ω ⊂ ZN → (partial) Fourier series!

• The coefficients cω determine the expressivity (how the accessible

functions can be combined).

• But the expressivity is also limited by the data encoding strategy.

• Universality: the Fourier series formalism allows to study quantum

models using the results in Fourier analysis (see [Schuld et al., 2021]

and [Manzano et al., 2023a]).
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PQCs: Universality results (I)

Definition
Let U(x ;θ) be modelled as a unitary such that (1 layer):

U(θ, x) = W (2)(θ(2))S(x)W (1)(θ(1)),

and

S(x) = e−x1H ⊗ · · · ⊗ e−xNH =: SH(x)

where H is a particular Hamiltonian.

Definition
Let {Hm|m ∈ N} be a Hamiltonian family where Hm acts on m

subsystems of dimension d . Such a Hamiltonian family gives rise to a

family of models {fm} in the following way:

fm(x) = ⟨Γ|S†
Hm

(x)MSHm(x) |Γ⟩ . (1)

with |Γ⟩ := W (1)(θ(1)) |0⟩.
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PQCs: Universality results (II)

Theorem (Convergence in L2 [Schuld et al., 2021])
Let {Hm} be a universal Hamiltonian family, and {fm} the associated

quantum model family, defined via (1). For all functions

f ∗ ∈ L2
(
[0, 2π]N

)
, and for all ϵ > 0, there exists some m′ ∈ N, some

state |Γ⟩ ∈ Cm′
and some observable M such that

∥fm′ − f ∗∥L2 < ϵ.

Theorem (Convergence in Lp [Manzano et al., 2023a])
Let {Hm} be a universal Hamiltonian family, and {fm} the associated

quantum model family, defined via (1). For all functions

f ∗ ∈ Lp
(
[0, 2π]N

)
where 1 ≤ p <∞, and for all ϵ > 0, there exists some

m′ ∈ N, some state |Γ⟩ ∈ Cm′
, and some observable M such that:

∥fm′ − f ∗∥Lp < ϵ.
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PQCs: Universality results (and III)

Theorem (Convergence in C 0 [Manzano et al., 2023a])
Let {Hm} be a universal Hamiltonian family, and {fm} the associated

quantum model family, defined via (1). For all functions f ∗ ∈ C 0 (U)

where U is compactly contained in the closed cube [0, 2π]N , and for all

ϵ > 0, there exists some m′ ∈ N, some state |Γ⟩ ∈ Cm′
, and some

observable M such that fm′ converges uniformly to f ∗:

∥fm′ − f ∗∥C 0 < ϵ,

with

∥fm′ − f ∗∥C 0 := sup
x∈[0,2π]N

∥fm′(x)− f ∗(x)∥ .
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PQCs for Black-Scholes distribution

Figure 4: PQC approximating the Black-Scholes distribution, using the two

different empirical risk functions associated to L2 and C 0 convergence results,

respectively.
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Discussion on Quantum Monte Carlo

Is the Quantum Monte Carlo what we (computational finance

community) expect?

In [Stamatopoulos et al., 2020] they divide the routine for computing the

price of a plain vanilla in three steps:

They promise a quadratic speedup over classical Monte Carlo:

“This represents a theoretical quadratic speed-up compared to classical

Monte Carlo methods.”

26



Classical Monte Carlo vs Quantum Monte Carlo

When claiming a “quadratic” speedup of the QMC over the Classical,

what are they comparing?

Steps involved in Classical and Quantum Monte Carlo :

Quantum Monte Carlo Classical Monte Carlo

Load Distribution
Load parameters...

Simulate the paths

Load Payoff Compute payoff

Amplitude Estimation
Sum over paths

Print the results

“In most of the existing literature on option pricing for equities using

quantum computers... an SDE is tacitly solved... Once this SDE is

solved... the pricing of a particular security begins by applying

QAE.[Alghassi et al., 2021]”
27



Bottleneck

The bottleneck in Classical Monte Carlo is in simulating paths.

Analogously, the bottleneck in the quantum algorithm is in the

loading/simulation/computation of the distribution.

The quantum advantage might disappear when taking into account the

cost of simulation:

“Although preparing such states is in principle always possible for

reasonable stochastic processes, efficient realization of this method

demands a careful analysis and may not always result in a practical

quantum advantage.” (see [Alghassi et al., 2021])
28



Quantum Monte Carlo simulation

Figure 5: Quantum Monte Carlo simulation.
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Quantum Monte Carlo simulation

Figure 5: Quantum Monte Carlo simulation.

In single precision and M = 12: ∼ 800 (logical) qubits!
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Ranking of quantum computers in number of qubits

Figure 6: Quantum computers with more than 100 (physical) qubits

(05/06/2024).
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Other challenges in algorithms for quantitative finance

• Data accessibility for Quantum Machine Learning models.

• Quantum-native function implementations (using unitary

transforms).

• Information extraction from a quantum state:

• QAE can be seen as an efficient information extraction routine

• Post selection in PDE-Hamiltonian simulation algorithms?

• Rigorous proofs for:

• Speedups (quantum advantage)

• Estimation convergence

• Circuits complexity (depth)

• Quantum volume (NISQ):

• Intrinsic noise of the current quantum systems (the shallower the

better)

• Limited number of qubits (i.e. to represent floating-point numbers)

• Others: coherence time, measurement errors, circuit compiler

efficiency, etc.
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Conclusions

• In recent years we have seen significant advances in quantum

algorithms with application to financial mathematical problems.

• While this progress is very encouraging, further work will be required

to prove that Quantum Computing can deliver real-world advantage.

• Especially if this advantage is to be delivered on NISQ technology

with limitations to both the number of logical qubits and the depth

of quantum circuits.

• Research into financial applications of quantum computing is

accelerating with new ideas emerging at rapid pace...

• ...but important breakthroughs across the technology stack will be

needed to make the approaches viable.

• Theory/software is ahead of practice/hardware!

• Plenty of room for contributions!
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Quantum Computing basics (II)

• The Bloch sphere provides a representation of qubit state

• Measuring a qubit occurs along the Z axis, so it is irreversible and

will collapse to either 0 or 1
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Quantum Computing basics (and III)

• Each row represents a bit, either quantum or classical

• The operations are performed each qubit from left to right

• Measurement to extract the information
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QMC: Grover Amplification

Given a state:

|ψ⟩ = sin(θ) |ϕ⟩+ cos(θ)
∣∣ϕ⊥〉 ,

Grover operator performs the following transformation:

Qk |ψ⟩ = sin((2k + 1)θ) |ϕ⟩+ cos((2k + 1)θ)
∣∣ϕ⊥〉 .
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QMC: Quantum Amplitude Estimation (graphically)
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QMC: Risk measures

Find VaRα(X ) = inf{x : P[X ≤ x ]} ≥ 1− α} = inf{x : FX (x) ≥ 1− α}:

fJ(x) =

{
1 if x ≤ xJ

0 otherwise

Thus, the original QMC state becomes

|ψ⟩ = |0⟩ ⊗
N−1∑
j=J+1

p(xj) |j⟩+ |1⟩ ⊗
J∑

j=0

√
p(xj) |j⟩

A bisection search over J and measuring |1⟩ gives the xJα ≈ VaRα(X )

To estimate CVaRα(X ), take f (x) = x
xJα

fJα(x), so

|ψ⟩ = |0⟩⊗

 N−1∑
j=Jα+1

p(xj) |j⟩+
Jα∑
j=0

(
1− xj

xJα

)
p(xj) |j⟩

+|1⟩⊗
Jα∑
j=0

√
xj
xJα

p(xj) |j⟩

and measure |1⟩. Then, CVaRα(X ) ≈ xJα
1−α

∑Jα
j=0

xj
xJα

p(xj)
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QMC: Pricing

Using Y-rotations and a comparator (in K ), we can construct:

|ψ⟩ = |0⟩ ⊗
∑
xj<K

√
p(xj) |j⟩ [cos(g0) |0⟩+ sin(g0) |1⟩]

+ |1⟩ ⊗
∑
xj≥K

√
p(xj) |j⟩ [cos(g0 + g(xj)) |0⟩+ sin(g0 + g(xj)) |1⟩]

The probability of measuring the second ancilla (auxiliary) state |1⟩ is:

P =
∑
xj<K

p(xj) sin
2(g0) +

∑
xj≥K

p(xj) sin
2(g0 + g(xj))

For a European call (max(0, xj − K )), set g(x) = 2c(x−K)
xmax−K , g0 =

π
4 − c .

Thus, using that sin2(cf (x) + π
4 ) = cf (x) + 1

2 +O(c3f 3(x)), we have

P ≈
∑
xj<K

p(xj)

(
1

2
− c

)
+
∑
xj≥K

p(xj)

(
2c(xj − K )

xmax − K
+

1

2
− c

)
=

1

2
− c +

2c

xmax − K

∑
xj≥K

p(xj)(xj − K )
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