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Motivation and proposal
• Extract implied information from observed option prices with

early-exercise features.

• Computing American-style option prices is generally more
challenging than pricing European-style options.

• The optimization process to address the inverse problem requires
solving the pricing model many thousands of times.

• Other complicating factors: negative interest rate and/or
dividend yields (complex-shaped early-exercise regions)

• Implied volatility: inverse function approximated by an artificial
neural network.

• Implied dividend: the inverse problem formulated as a calibration
problem.
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Problem formulation

• For simplicity, we consider the Geometric Brownian Motion (GBM)
process,

dSt = (r − q)Stdt+ σStdWt,

where St is the underlying price, σ is the volatility.

• The arbitrage-free value of an American option at t is

Vam(St, t) = sup
u∈[0,T]

EQ
t [e−r(T−t)H(K, Su)|Su],

where H(·) is the payoff function with strike price K and expiration
time is T.



Problem formulation
• An optimal exercise boundary S∗t ≡ S∗(t) splits the domain into

early-exercise (stopping) Ωs and continuation (holding) regions
Ωh (Ω = Ωs +Ωh).

• An American option price can be written in terms of European
counterpart,

VPam(St, t) = EQ
t [e−r(T−t) max(K − ST ,0)]

+

∫ T

t
EQ
u [(rK − qSu)1{Su∈Ωs}]du.

• The second term is the early-exercise premium
• At the free boundary, we have,

Vam(S∗, t) = H(K, S∗t ).



Negative rates and dividends
• Two continuation regions may arise when both the interest rate

and dividend yield become negative.
• The option value hits the payoff function twice.
• The stopping is between the two early-exercise points.
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Settings: r = −0.01, q = −0.06, σ = 0.2, T = 20, K = 1.0.



Implied volatility
• The implied volatility is the level of volatility which, inserted in

the pricing model, makes the market and model prices match.
• Implied volatility is an indicator for the future uncertainty of the

asset prices as estimated by market participants.
• Computing the implied volatility as an inverse problem:

σ∗ = BS−1
am(Vmktam ; S,K, τ, r,q, α),

where BS−1
am(·) denotes the inversion of the Black-Scholes formula,

and Vmktam is an American option price observed in the market.
• The implied volatility inverse problem is often solved by a

nonlinear root-finding method, following an iterative algorithm.
• Given an American option price observed in the market, the

implied volatility σ∗ is often determined by solving

Vmktam − BSam(σ∗; S0,K, τ, r,q, α) = 0.



Issues in computing implied
volatility (I)

• Existence of σ∗ is guaranteed by the monotonicity of the
Black-Scholes equation w.r.t to the volatility in the holding region.

• The option’s Vega, becomes zero in the stopping region for
American call and put options. It is well-known that,

|∆| = |∂Vam
∂S | = 1, Vega =

∂Vam
∂σ

= 0.

• In other words, the American option prices do not depend on the
volatility in the stopping regions. Consequently,

∂σ

∂Vam
=

1
Vega → ∞.

• When inverting the American Black-Scholes pricing problem in
the stopping regions, no unique solution for the implied volatility.



Issues in computing implied
volatility (II)

• Therefore, the definition domain should be the continuation
region.

stock/strike
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Implied dividend
• Many companies pay a share of the stock value on the

ex-dividend date, which causes the stock price to drop.

• This quantity is often called the actual dividend.

• The Implied dividend reflects how the market anticipates future
dividend payments of stocks.

• The difference between actual dividends and implied dividends is
similar to that between historical and implied volatility. The two
parameters reflect different market aspects.

• Some companies do not pay dividends, but the corresponding
options may imply a non-zero dividend, which may reflect the
borrowing level of the stock.

• The borrowing costs are seen as a factor that influences the
implied dividend as a function of the time or the strike price.



Issues computing implied
dividend (I)

• Our approach is to estimate implied dividend and implied
volatility at once.

• For European options, the implied dividend can be estimated by
the put-call parity,

VCeu(S, t)− VPeu(S, t) = Ste−qτ − Ke−rτ ,

so that,

q = − 1
τ
log(

VCeu − VPeu + Ke−rτ
St

).

• For American-style options, the put-call parity does not hold.

• What about “de-Americanization” strategy?



Issues computing implied
dividend (II)

• Writting in terms of the early-exercise premiums, ∆VC and ∆VP,

VCam = VCeu +∆VC and VPam = VPeu +∆VP.

• The “deviation” from the European put-call parity is

EED := ∆VC −∆VP = VCam − VPam − Ste−qτ + Ke−rτ .
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Computing the implied dividend

• Again, model-based approach is employed: Black-Scholes.

• The dividend yield is inverted to extract the implied dividend.

• Point of departure is the American call and put model prices:{
VCam = BSam(σ∗,q∗; S0,K, τ, r, α = 1),
VPam = BSam(σ∗,q∗; S0,K, τ, r, α = −1),

• The system of equations is formulated as a minimization problem.

• Note that a local search based optimization method will most
likely not converge when traversing those early-exercise regions.



Artificial Neural Networks (ANN)

• ANNs are powerful function approximators.

• An ANN can be described as a composite function,

F(x|θ) = f (ℓ)(...f (2)(f (1)(x;θ(1));θ(2)); ...θ(ℓ)),

where x are the input variables, θ the hidden parameters (i.e. the
weights and the biases in artificial neurons), ℓ the hidden layers,
and f (ℓ)(·) the activation functions of each layer.

• Once the structure is determined, an ANN becomes a
deterministic function.

• And once trained, the the evaluation of F is super fast.



Training an ANN
• Determining the values of the hidden parameters which will

minimize a loss function.
• A popular approach for training neural networks is to employ

first-order optimization algorithms.
• Gradient-based algorithms are often fast, but it may be difficult to

calculate the gradients for a large test set.
• Stochastic gradient descent algorithms (SGD) randomly select a

portion of the data set (saving memory).
• SGD and its variants (like Adam) are thus preferable to train the

ANNs on big data sets.
• In supervised learning, the objective function is

argmin
θ
L(θ|(X,Y)),

given the input-output pairs (X,Y) and a user-defined loss, L(θ).



ANN for implied volatility
• Develop an ANN to approximate the inverse function in Ωh,

σ∗ = BS−1
am(Vmktam ; S,K, τ, r,q, α)

≈ NN(Vmktam ; S,K, τ, r,q, α), [V, S,K, τ, r,q] ∈ Ωh.

• The ANN must be trained based on the known market variables to
approximate the unique target variable σ∗.

• The effective definition domain Ωh corresponds to the
continuation regions.

• The continuation regions are not known initially or are so
complicated that there is no analytic formula to describe them.

• However, the counterpart, the early-exercise regions, can be
found implicitly from the data.



Computing the holding region
• We obtain the approximate continuation region by Ωh = Ω− Ωs.
• We use two indicators to detect the samples in Ωs:

• The difference between the option value and the payoff.
• The option’s sensitivity Vega.

• For numerical stability, we prescribe some threshold values, ϵ1
and ϵ2:

|Vam(St,K, τ, r,q, σ)− H(K, St)| > ϵ1.

Vega > ϵ2.

• The first one should cover the second one, but for robustness
reason, both are enforced.

• The procedure is done off-line, prior the training phase, by
filtering out the samples according to the criteria.



ANN for implied volatility

A flowchart of the ANN-based method to compute the implied volatility
from American option prices.



ANN for implied information
• Determining both implied volatility and implied dividend

simultaneously.
• We assume the implied volatility and the implied dividend are

identical for calls and puts (given K, S0, T, t and r):{
VC,mktam − BSam(σ∗,q∗; S0,K, τ, r, α = 1) = 0,
VP,mktam − BSam(σ∗,q∗; S0,K, τ, r, α = −1) = 0,

• Then, we have two unknown parameters to calibrate, implied
volatility σ∗ and implied dividend yield q∗, from a pair of
American option prices, VC,mktam and VP,mktam .

• The above system is reformulated as a minimization problem,

arg min
σ∗∈R+,q∗∈R

(BSam(σ∗,q∗;α = 1)−VC,mktam )2+(BSam(σ∗,q∗;α = −1)−VP,mktam )2.

• We adapt a fast, generic and robust calibration framework, the
CaNN (Calibration Neural Networks) developed in [1].



CaNN for implied information
• The CaNN consists of two stages:

• The forward pass, including the training and testing phase,
approximates the American-style Black-Scholes prices.

• The backward pass finds the two parameters (σ∗,q∗) to
match the two observed American option prices, VP,mktam and
VC,mktam (given K, T, S0, r).

• We have developed one neural network providing two output
values, the American call and put prices.

• The objective function is written as

arg min
σ∗∈R+,q∗∈R

(NN(σ∗,q∗;α = 1)− VC,mktam )2 + (NN(σ∗,q∗;α = −1)− VP,mktam )2,

which is used as the loss function for the backward pass.



CaNN structure

(a) Training phase (b) Calibration phase
Left: In the forward pass of the CaNN, the output layer produces two
option prices. Right: In the calibration phase, the CaNN estimates the
two parameters, implied volatility and implied dividend, in the original
input layer.



The ANN design and training set
• We find a balance between representation power and efficiency

with the following configuration:

Hyper-parameter Value
Hidden layers 4

Neurons (each layer) 200
Activation Softplus

Initialization Glorot_uniform
Optimizer Adam
Batch size 1024

The ANN configuration.

• Other useful operations for deep NN (dropout or batch
normalization) do not bring any significant benefits in our
“shallow” ANN.

• Samples for the training/test set are generated by the COS
method.



Settings for computing implied
volatility

• Without loss of generality, we use a fixed spot price S0 = 1.0.
• The two thresholds are set to ϵ1 = 0.0001 and ϵ2 = 0.001.
• We consider the measures

MSE =
1
n

n∑
i=1

(yi − ŷi)2, MAE =
1
n

n∑
i=1

|yi − ŷi|, MAPE =
1
n

n∑
i=1

|yi − ŷi|
yi

.

ANN Parameters Value range Employed method

ANN Input

Strike, K [0.6, 1.4] LHS
Time value, log (V̂Pam) (−11.51,−0.24) COS
Time to maturity, τ [0.05, 3.0] LHS

Interest rate, r [-0.05, 0.1] LHS
Dividend yield, q [-0.05, 0.1] LHS

ANN output Implied volatility, σ∗ (0.01, 1.05) LHS
Train dataset for American options under the Black-Scholes model; The
spot price S0 = 1 is fixed. The upper bound of American put price is 1.2.
LHS stands for Latin Hypercube Sampling.



Numerical results: implied
volatility

• We analyse the training and testing performance.

• The test performance is close to the train performance,
suggesting that the trained ANN generalizes well for unseen data

• The ANN predicted implied volatility values approximate the true
values accurately for both the train and test datasets, as is
indicated by the R2 measure.

- MSE MAE MAPE R2

Training 4.33 ·10−7 2.44·10−4 1.11·10−3 0.999994
Testing 4.60·10−7 2.51·10−4 1.15·10−3 0.999993

Multiple measures are used to evaluate the performance.



Numerical results: implied
volatility

• It is observed that the trained model performance tends to
decrease when the pricing model parameters gets close to the
upper or lower bounds

• Thus the training data set is recommended to have a wider
parameter range than the test range of interest.

(a) Training (b) Testing

Left: R2=0.999994; Right: R2=0.999993



Settings for computing implied
information

• The loss function includes two components:

MSE =
1

2n

n∑
i=1

{(ṼPam,i − VP,modam,i )2 + (ṼCam,i − VC,modam,i )2}.

• Training data set for the forward pass:

ANN Parameters Value range Method

Forward input

Strike, K [0.45, 1.55] LHS
Time to maturity, τ [0.08, 3.05] LHS

Risk-free rate, r [-0.1, 0.25] LHS
Dividend yield, q [-0.1, 0.25] LHS

Implied volatility, σ (0.01, 1.05) LHS

Forward output American put, VPam (0, 1.8) COS
American call, VCam (0, 1.2) COS

We fix S0 = 1, and sample strike prices K to generate different money-
ness levels. The total number of the data samples is nearly one million,
with 80% training, 10% validation, 10% test samples.



CaNN: performance of the
forward pass

• The results, for both Calls and Puts, are highly satisfactory,
achieving very good levels of precision in all the considered
measures.

– Option MSE MAE MAPE R2

Training Call 1.40 × 10−7 3.00 × 10−4 1.25 × 10−3 0.9999965
Put 2.54 × 10−7 4.24 × 10−4 1.64 × 10−3 0.9999959

Testing Call 1.43 × 10−7 3.02 × 10−4 1.27 × 10−3 0.9999964
Put 2.55 × 10−7 4.26 × 10−4 1.64 × 10−3 0.9999959

The performance of the CaNN forward pass with two outputs.



CaNN: performance of the
backward pass

• The results suggest that the CaNN can accurately recover the
implied volatility and implied dividend from “artificial market
option data”.

• Even in complex scenarios (negative interest rates and/or
dividend yields), CaNN recovers the true values.

K/S0 T r σ† q† Cmktam Pmktam σ∗ q∗
1.0 0.5 -0.04 0.1 0.06 0.0146 0.0597 0.099 0.059
1.1 0.5 -0.04 0.2 -0.06 0.0255 0.1181 0.198 -0.061
1.0 0.75 0.0 0.3 -0.02 0.1119 0.0976 0.300 -0.020
1.2 1.0 -0.04 0.4 0.08 0.0603 0.3810 0.40 0.080
0.8 1.0 0.02 0.3 0.02 0.2322 0.03472 0.299 0.020
0.7 1.25 0.0 0.4 -0.04 0.3886 0.0378 0.399 -0.040

Using CaNN to extract implied volatility and implied dividend. † indi-
cates the prescribed values, ∗ indicates the calibrated values.



Conclusions
• We studied a data-driven method to extract the implied volatility

and/or implied dividend yield from observed market American
option prices in a fast and robust way.

• For computing the American implied volatility, we propose a
sophisticated ANN to approximate the inverse problem.

• The problem domain is extracted from the data, preserving the
ANN offline-online decoupling advantage.

• We also propose a method for finding simultaneously implied
dividend and implied volatility from American options using a
calibration approach.

• The numerical experiments demonstrate that the CaNN is able to
accurately extract multiple pieces of implied information from
American options.

• It should be feasible to extend the approach to deal with
time-dependent or discrete dividends.
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CaNN for implied information
• We adapt a fast, generic and robust calibration framework, the

CaNN (Calibration Neural Networks) developed in [1].
• The basic idea of the methodology is to convert the calibration of

model parameters into an estimation of a neural network’s
hidden units.

• The model calibration and training ANNs can be reduced to
solving an optimization problem.

• It enables parallel GPU computing to speed up the computations,
which makes feasible to employ a global optimization technique
to search the solution space.

• Here, we employ the gradient-free optimization algorithm,
Differential Evolution (DE) which does not get stuck in local
minima or in the stopping region.

• And DE is an inherently parallel technique.



CaNN for implied information

(a) Conventional DE (b) Parallel DE
The global optimizer DE runs in parallel within CaNN. "Gm" represents
the m-th generation, where there are n candidates of to-be-optimized
parameters, i.e., n sets of open parameters in the pricing model. These
n sets of model parameters are independent, thus can be processed by
the ANN simultaneously, instead of a for-loop, to reduce the computa-
tion time.
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