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Motivation

• Quantum computers could bring unparalleled competitive advantage

to financial companies in areas like portfolio optimisation, option

pricing, quantitative risk management or Machine Learning models.

• Quantum computers are able to handle exponentially growing (in

qubits) Hilbert spaces.

• Thus, quantum computing becomes an attractive framework for

calculations over large multi-dimensional domains.

• Quantum algorithms could potentially overcome their classical

counterparts in dealing with combinatorial explosions and the curse

of dimensionality.

• However, bringing this to practice encounters several bottlenecks,

especially with the current or near-term quantum technologies

(NISQ).

• Then, plenty of room for contributions!
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Disclaimer

• Quantum computing literature is experiencing an explosion: This

overview incorporates only a few of the current trends.

• The selection of the addressed topics reflects only my view

(interests) within the vast scope of the computational finance field.

• Then, many important topics are not addressed here: optimal

investment, time series, blockchain, cryptography, etc.

• There might be inconsistencies or certain abuse in the

(mathematical and/or quantum) notation. In some cases, that is

intentional, for the sake of clarity. In others...sorry in advance!
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Quantum Computing basics



Quantum Computing basics (I)

• The basic unit of information is the qubit (alternatively to the bit).

• A qubit is represented by a (column) vector:(
α

β

)

with the amplitudes α, β ∈ C and |α|2 + |β|2 = 1.

• Basis states:

|0⟩ =

(
1

0

)
, |1⟩ =

(
0

1

)
• {|0⟩ , |1⟩} is a computational basis for a quantum state:

|ψ⟩ = α |0⟩+ β |1⟩

• When measuring the state:

• get 0 with probability |α|2

• get 1 with probability |β|2
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Quantum Computing basics (II)

• The Bloch sphere provides a representation of qubit state

• Measuring a qubit occurs along the Z axis, so it is irreversible and

will collapse to either 0 or 1
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Quantum Computing basics (III)

• Quantum gates to perform operations on qubits

• Gates are reversible and can be represented as unitary matrices

acting on the qubit vectors.
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Quantum Computing basics (III)

• Quantum gates to perform operations on qubits

• Gates are reversible and can be represented as unitary matrices

acting on the qubit vectors.
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Quantum Computing basics (IV)

• Superposition: Identically prepared qubits can still behave randomly

• The randomness is inherent in the quantum nature

|0⟩

|1⟩

|0⟩ + |1⟩

∼ 50/50 chance of

being |0⟩ or |1⟩
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Quantum Computing basics (and V)

• Each row represents a bit, either quantum or classical

• The operations are performed each qubit from left to right

• Measurement to extract the information
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Overview



Overview

• Based on the publication [11]:

A. Gómez, Á. Leitao, A. Manzano, D. Musso, M.R. Nogueiras, G.

Ordóñez and C. Vázquez. A survey on quantum computational

finance for derivatives pricing and VAR, Archives of

Computational Methods in Engineering 29: 4137-4163, 2022.

• Survey on the classical methods for pricing and VaR, and their

potential quantum counterparts.

• We mainly focus on:

• Monte Carlo-like methods.

• Partial differential equations (PDEs).

• Machine Learning/Neural Networks/Deep Learning.
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Quantum Monte Carlo
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Quantum Monte Carlo (QMC)

The quantum-accelarated Monte Carlo could potentially/theoretically

provide a quadratic speedup.

How? Quantum Amplitude Estimation.

Monte Carlo methods (for pricing) can be informally defined as

1

M

M−1∑
i=0

f (Xi ) ≈ E[f (X )] =

∫
f (x)p(x)dx ≈

N−1∑
j=0

f (xj)p(xj)

where p(x) is a density function.

Analogously, Quantum Monte Carlo (QMC) assumes a state of the form

|ψ⟩ = |0⟩ ⊗
N−1∑
j=0

f (xj)p(xj) |j⟩+ |1⟩ ⊗
N−1∑
j=0

√
1− f 2(xj)p(xj) |j⟩

where the quantity of interest is encoded in the state’s amplitude.
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QMC: Quantum Amplitude Estimation

Given a state:

|ψ⟩ = a |ϕ⟩+
√
1− a2

∣∣ϕ⊥〉 ,
Quantum Amplitude Estimation (QAE) is an algorithm which gives an

estimation â± ϵ

2
of the amplitude a.

This technique promises to obtain a quadratic speedup over its

classical counterpart.

To achieve so it relies on two main subroutines:

• Grover (search) amplification.

• Quantum Phase Estimation.
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QMC: Grover Amplification

Given a state:

|ψ⟩ = sin(θ) |ϕ⟩+ cos(θ)
∣∣ϕ⊥〉 ,

Grover operator performs the following transformation:

Qk |ψ⟩ = sin((2k + 1)θ) |ϕ⟩+ cos((2k + 1)θ)
∣∣ϕ⊥〉 .
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QMC: Quantum Amplitude Estimation (graphically)
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QMC: Quantum Amplitude Estimation (circuit)

Figure 1: Quantum Amplitude Estimation
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QMC: Quantum Amplitude Estimation (convergence)

Theorem (Mean estimation for [0, 1] bounded functions [25])
Let there be given a quantum circuit P on n qubits. Let v(P) be the random

variable that maps to v(x) ∈ [0, 1] when the bit string x is measured as the

output of P. Let R be defined as

R|x⟩ |0⟩ = |x⟩
(√

1− v(x) |0⟩ −
√

v(x) |1⟩
)
.

Let |X ⟩ be defined as |X ⟩ = R(P ⊗ I2)
∣∣0n+1

〉
. Set U = I2n+1 − 2 |X ⟩ ⟨X |.

There exists a quantum algorithm that uses O(log 1/δ) copies of the state X ,

uses U for a number of times proportional to O(m log 1/δ) and outputs an

estimate µ̂ such that

|µ̂− E[v(P])| ≤ C

(√
E[v(P)]

m
+

1

m2

)
,

with probability at least 1− δ, where C is a universal constant. In particular,

for any fixed δ > 0 and any ϵ such that 0 < ϵ ≤ 1, to produce an estimate µ̂

such that, with probability at least 1− δ, |µ̂− E[v(P)]| ≤ ϵE[v(P)], it suffices

to take m = O
(
(ϵE[v(P)])−1

)
. To achieve |µ̂− E[v(P)]| ≤ ϵ with probability

at least 1− δ, it suffices to take m = O
(
ϵ−1
)
. 17



QMC: variations on QAE

• Quantum Amplitude Estimation is not feasible with the current

technology as it depends on Quantum Phase Estimation.

• The depth of the circuit due to the use of a Quantum Fourier

Transform (QFT) is prohibitive.

• To mitigate it several new techniques have appeared:

• Simplified Quantum Counting (SQAE)[1]

• Maximum Likelihood Amplitude Estimation (MLAE)[34, 35]

• Iterative Quantum Amplitude Estimation (IQAE)[14]

• We have proposed another alternative [23]:

A. Manzano, D. Musso, Á. Leitao. Real Quantum Amplitude

Estimation , EPJ Quantum Technology 10(2), 2023.
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RQAE: Settings

• Consider a one-parameter family of oracles Ab that, acting on the

state |0⟩, yield

Ab |0⟩ = |ψ⟩ = (a+ b) |ϕ⟩+ cb
∣∣ϕ⊥〉

b
,

where a is a real number, b is an auxiliary, continuous and real

parameter that we call “shift”.

• Given a precision level ϵ and a confidence level 1− γ, the goal of the

RQAE algorithm is to compute an interval (amin
I , amax

I ) ⊂ [−1, 1] of

width smaller than 2ϵ which contains the value of a with probability

greater or equal to 1− γ.
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RQAE: Algorithm (graphically)

(a) Starting point. (b) Shift. (c) Amplification.

(d) Measuring. (e) Undoing amplification. (f) Undoing shift. 20



RQAE: Main properties

Given ϵ, γ and an amplification policy (ki , i = 0, . . . , I ):

• Circuit depth bounded by:

kI ≤

⌈
arcsin

(√
2ϵp
)

arcsin(2ϵ)
− 1

2

⌉
= kmax.

• Precision ϵ with confidence 1− γ (Proof of Correctness):

P
[
a ̸∈ (amin

I , amax
I )

]
≤ γ.

• The total number of calls to the oracle is bounded by:

Noracle < C1
1

ϵ
log

(
C2

γ

)
,

where the constants C1 and C2 depend on the amplification policy.
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RQAE: Numerical results (I)
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Figure 2: Number of calls to the oracle Noracle versus the required precision ϵ.

The picture is in a log-log scale with the x-axis inverted.
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RQAE: Numerical results (and II)
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RQAE: Main Conclusions

• More information from the quantum circuit than just the module of

the amplitude, i.e., the sign of the quantity of interest, increasing

the applicability.

• RQAE is an iterative algorithm which offers explicit control over the

amplification policy through adjustable parameters.

• Control (also via the free parameters) the depth of the circuit, a

crucial feature in the current NISQ era.

• A rigorous (and clean) theoretical analysis of the RQAE performance

is provided, proving that it achieves a quadratic speedup (w.r.t.

unamplified sampling), modulo logarithmic corrections.
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Quantum Financial PDEs
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Quantum approaches for Black-Scholes PDE

• Some financial PDEs can be mapped into the propagation governed

by an appropriate Hamiltonian operator [12, 9].

• Applying the change of variable S = ex on the Black-Scholes eq.,

∂V

∂t
+

(
µ− σ2

2

)
∂V

∂x
+
σ2

2

∂2V

∂x2
− µV = 0 ,

which can be written as a Schrödinger-like equation,

∂V

∂t
= −i ĤBS V ,

where

ĤBS = i
σ2

2
p̂2 −

(
σ2

2
− µ

)
p̂ + iµI , with p̂ = −i

∂

∂x
.

• The Hamiltonian ĤBS is not Hermitian.

• Therefore, the associated evolution operator Û(t, t0) = e−i ĤBS(t−t0)

is not unitary.
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PDEs: Real-time propagation

• To implement Û(t, t0) into a quantum circuit, one can consider an

enlarged system, i.e. a doubled unitary operator [12].

• Require of adding an auxiliary qubit.

• ĤBS is diagonal in momentum space → diagonal operator → QFT

(and Inverse QFT) → exponential speedup.

• But, an overall exponential speedup requires efficient loading of the

model and payoff function.

• Again, QFT (IQFT) is gate-wise demanding (incompatible NISQ).
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PDEs: Real-time propagation (solution)

• The algorithm achieves a high degree of agreement in a

fault-tolerant quantum computer...

• ...but with a 60% success probability in the measurement and

post-selection (depending on the financial parameters).

• Not tested in a real NISQ quantum system.

(a) Boundary error without duplication. (b) Convergence in qubits (point).
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PDEs: Imaginary-time propagation

• Additional change of variable τ = σ2(T − t) and transformation

v(x , τ) = exp(−ax − bτ)V (t, s), with suitable constants a and b,

∂v

∂τ
=

1

2

∂2v

∂x2
.

• Using the Wick rotation τ̃ = −iτ (real time to imaginary time), the

heat equation turns into a Schrödinger-like equation,

∂v

∂τ̃
= −ĤHE v ,

where

ĤHE = − i

2
q̂2 , with q̂ = −i

∂

∂x
.

• This leads to a purely anti-Hermitian Hamiltonian operator.

• Imaginary-time propagation transforms oscillations into dampings.

• Problem of finding the ground state of quantum systems, well

investigated in condensed matter physics and chemistry.

• The imaginary time evolution operator is approximated by an ansatz

circuit in [9].
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PDEs: Imaginary-time propagation (solution)

• The solution is retrieved by a hybrid quantum-classical algorithm:

(c) Prices of European option. (d) Errors of European option.
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Quantum Machine/Deep Learning
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Quantum Machine/Deep Learning

• (Quantum) Principal Component Analysis:

• Eigenvalues by Quantum Phase Estimation [27].

• Convert covariance matrix into density matrix (QPCA) [20, 2].

• (Quantum) Regression:

• Solving linear systems by the HHL algorithm [37].

• Quantum Kernel Estimation [8].

• Quantum regression with Gaussian processes [38].

• Hybrid classical-quantum deep learning:

• Move the training to a quantum computer (quantum annealing) [3].

• Quantum-enhanced reinforcement learning [29].

• Quantum GANs [26].

• Boltzman machines → Born machines [36, 4].

• Full Quantum Neural Network (QNN):

• NN models based on the principles of quantum mechanics [17].

• How to train QNN? Recent advances in [6, 7].

• Promising approach: Parametrized Quantum Circuits

32



Parametrized Quantum Circuits (PQCs)

• Also known as variational circuits or quantum circuit learning.

• First theoretical results on accessibility, expressivity and universality.

• Circuits with both fixed and adjustable (“parametrized”) gates.

• The training is carried out by a classical optimiser.

• Each layer composed by a trainable circuit block Wi (θ) and a

data-encoding block S(x):

Figure 3: Parametrized Quantum Circuit.
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PQCs: trigonometric series

• A PQC model can be written as a generalized trigonometric series:

E[M] = ⟨0|U†(x ;θ)MU(x ;θ) |0⟩ = f (x;θ) =
∑
ω∈Ω

cω(θ)e
iωx ,

where M is an observable, U(x ;θ) is a quantum circuit that depends

on inputs x = (x0, x1, ..., xN) and the parameters θ = (θ0, θ1, ..., θT ).

• Accessibility: with Ω ⊂ ZN → (partial) Fourier series!

• The coefficients cω determine the expressivity (how the accessible

functions can be combined).

• But the expressivity is also limited by the data encoding strategy.

• Universality: the Fourier series formalism allows to study quantum

models using the results in Fourier analysis (see [30] and [21]).
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PQCs: Universality results (I)

Definition
Let U(x ;θ) be modelled as a unitary such that (1 layer):

U(θ, x) = W (2)(θ(2))S(x)W (1)(θ(1)),

and

S(x) = e−x1H ⊗ · · · ⊗ e−xNH =: SH(x)

where H is a particular Hamiltonian.

Definition
Let {Hm|m ∈ N} be a Hamiltonian family where Hm acts on m

subsystems of dimension d . Such a Hamiltonian family gives rise to a

family of models {fm} in the following way:

fm(x) = ⟨Γ|S†
Hm

(x)MSHm(x) |Γ⟩ . (1)

with |Γ⟩ := W (1)(θ(1)) |0⟩.
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PQCs: Universality results (II)

Theorem (Convergence in L2 [30])
Let {Hm} be a universal Hamiltonian family, and {fm} the associated

quantum model family, defined via (1). For all functions

f ∗ ∈ L2
(
[0, 2π]N

)
, and for all ϵ > 0, there exists some m′ ∈ N, some

state |Γ⟩ ∈ Cm′
and some observable M such that

∥fm′ − f ∗∥L2 < ϵ.

Theorem (Convergence in Lp [21])
Let {Hm} be a universal Hamiltonian family, and {fm} the associated

quantum model family, defined via (1). For all functions

f ∗ ∈ Lp
(
[0, 2π]N

)
where 1 ≤ p <∞, and for all ϵ > 0, there exists some

m′ ∈ N, some state |Γ⟩ ∈ Cm′
, and some observable M such that:

∥fm′ − f ∗∥Lp < ϵ.
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PQCs: Universality results (and III)

Theorem (Convergence in C 0 [21])
Let {Hm} be a universal Hamiltonian family, and {fm} the associated

quantum model family, defined via (1). For all functions f ∗ ∈ C 0 (U)

where U is compactly contained in the closed cube [0, 2π]N , and for all

ϵ > 0, there exists some m′ ∈ N, some state |Γ⟩ ∈ Cm′
, and some

observable M such that fm′ converges uniformly to f ∗:

∥fm′ − f ∗∥C 0 < ϵ,

with

∥fm′ − f ∗∥C 0 := sup
x∈[0,2π]N

∥fm′(x)− f ∗(x)∥ .
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Challenges



Discussion on Quantum Monte Carlo

Is the Quantum Monte Carlo what we (computational finance

community) expect?

In [33] they divide the routine for computing the price of a plain vanilla in

three steps:

They promise a quadratic speedup over classical Monte Carlo:

“This represents a theoretical quadratic speed-up compared to classical

Monte Carlo methods.”
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Classical Monte Carlo vs Quantum Monte Carlo

When claiming a “quadratic” speedup of the QMC over the Classical,

what are they comparing?

Steps involved in Classical and Quantum Monte Carlo :

Quantum Monte Carlo Classical Monte Carlo

Load Distribution
Load parameters...

Simulate the paths

Load Payoff Compute payoff

Amplitude Estimation
Sum over paths

Print the results

“In most of the existing literature on option pricing for equities using

quantum computers... an SDE is tacitly solved... Once this SDE is

solved... the pricing of a particular security begins by applying QAE.[5]”
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Bottleneck

The bottleneck in Classical Monte Carlo is in simulating paths.

Analogously, the bottleneck in the quantum algorithm is in the

loading/simulation/computation of the distribution.

The quantum advantage might disappear when taking into account the

cost of simulation:

“Although preparing such states is in principle always possible for

reasonable stochastic processes, efficient realization of this method

demands a careful analysis and may not always result in a practical

quantum advantage.” (see [5])
40



Quantum Algorithm Pipeline

Quantum advantage of an algorithm? Efficient end-to-end framework!

We propose (in [22], inspired in [8]) a pipeline as:

• Focus on specific problems −→ Modularity

• Use algorithms from other works −→ Reusability
41



Other challenges for problems in quantitative finance

• Data loading for Quantum Machine Learning models.

• Quantum-native function implementations (using unitary

transforms).

• Information extraction from a quantum state:

• QAE can be seen as an efficient information extraction routine

• Post selection in PDE-Hamiltonian simulation algoritms?

• Rigorous proofs for:

• Speedups (quantum advantage)

• Estimation convergence

• Circuits complexity (depth)

• Quantum volume (NISQ):

• Intrinsic noisy of the current quantum systems (the shallower the

better)

• Limited number of qubits (i.e. to represent floating-point numbers)

• Others: coherence time, measurement errors, circuit compiler

efficiency, etc.
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Opportunities

• Quantum Monte Carlo: All the described above!

• PDEs:

• Mapping to linear systems (classical numerical methods)

• Proofs of algorithm complexity (close to exponential speedup?)

• Proofs for the universality/expressivity of quantum DL models:

• Theory behind the general reproducing kernels

• Adapt/use QML algorithms for financial applications.

• Efficient quantum versions of successful classical algorithms:

• Quantum COS

• PINNs

• Differential Machine Learning

• Other:

• Alternatives to Harrow-Hassidim-Lloyd (HHL) for linear systems.

• Similar opportunities in optimization algorithms.

• At practical level: NISQ era!
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Conclusions

• In recent years we have seen significant advances in quantum

algorithms with application to financial mathematical problems.

• While this progress is very encouraging, further work will be required

to prove that Quantum Computing can deliver real-world advantage.

• Especially if this advantage is to be delivered on NISQ technology

with limitations to both the number of logical qubits and the depth

of quantum circuits.

• Research into financial applications of quantum computing is

accelerating with new ideas emerging at rapid pace...

• ...but important breakthroughs across the technology stack will be

needed to make the approaches viable.

• Theory/software is ahead of practice/hardware!
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QMC: Risk measures

Find VaRα(X ) = inf{x : P[X ≤ x ]} ≥ 1− α} = inf{x : FX (x) ≥ 1− α}:

fJ(x) =

{
1 if x ≤ xJ

0 otherwise

Thus, the original QMC state becomes

|ψ⟩ = |0⟩ ⊗
N−1∑
j=J+1

p(xj) |j⟩+ |1⟩ ⊗
J∑

j=0

√
p(xj) |j⟩

A bisection search over J and measuring |1⟩ gives the xJα ≈ VaRα(X )

To estimate CVaRα(X ), take f (x) = x
xJα

fJα(x), so

|ψ⟩ = |0⟩⊗

 N−1∑
j=Jα+1

p(xj) |j⟩+
Jα∑
j=0

(
1− xj

xJα

)
p(xj) |j⟩

+|1⟩⊗
Jα∑
j=0

√
xj
xJα

p(xj) |j⟩

and measure |1⟩. Then, CVaRα(X ) ≈ xJα
1−α

∑Jα
j=0

xj
xJα

p(xj)
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QMC: Pricing

Using Y-rotations and a comparator (in K ), we can construct:

|ψ⟩ = |0⟩ ⊗
∑
xj<K

√
p(xj) |j⟩ [cos(g0) |0⟩+ sin(g0) |1⟩]

+ |1⟩ ⊗
∑
xj≥K

√
p(xj) |j⟩ [cos(g0 + g(xj)) |0⟩+ sin(g0 + g(xj)) |1⟩]

The probability of measuring the second ancilla (auxiliary) state |1⟩ is:

P =
∑
xj<K

p(xj) sin
2(g0) +

∑
xj≥K

p(xj) sin
2(g0 + g(xj))

For a European call (max(0, xj − K )), set g(x) = 2c(x−K)
xmax−K , g0 =

π
4 − c .

Thus, using that sin2(cf (x) + π
4 ) = cf (x) + 1

2 +O(c3f 3(x)), we have

P ≈
∑
xj<K

p(xj)

(
1

2
− c

)
+
∑
xj≥K

p(xj)

(
2c(xj − K )

xmax − K
+

1

2
− c

)
=

1

2
− c +

2c

xmax − K

∑
xj≥K

p(xj)(xj − K )
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Algorithms for simulating/loading distributions

Some approaches to compute the initial distribution relies on:

1. Use a general method to convert unitary operators to circuits [13].

2. Use specific methods to initialize the amplitudes to a normalized

vector [31, 18, 32].

3. Use the properties of the probability distribution to create an

efficient circuit [15, 24].

4. Create an ad-hoc circuit using Parameterized Quantum Circuit

(PQC) which approximates the amplitudes [26].

5. Using Tensor Networks techniques [28, 16, 10].

Approaches for financial problems which aim to simulate the underlying

SDE:

• Analogous SDE simulation with a “quantum” Floating-Point

number representation [25]

• Simulate the MC paths using a trinomial tree[19].

• Use Feynmann-Kac approach[5].
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Quantum Matrix

Instead of working with a quantum state of the form:

|ψ⟩ =
I−1∑
i=0

J−1∑
j=0

cij |i⟩nI ⊗ |j⟩nJ ,

we work with a data structure (quantum matrix) storing the same

information:
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Arithmetic on quantum matrices

• We provide arithmetic operations specifically designed for our

framework.

• We distinguish three categories depending on their efficiency.

• The most efficient ones (green) depend on the co-dimension instead

of the array’s length:

• Sum and difference.

• Multiplication by scalar.

• The techniques with middle efficiency (yellow) involve big number of

multicontrolled operations but do not depend on an oracle:

• Permutations in the quantum matrix.

• The least efficient techniques (red) depend on an oracle:

• Element-wise squaring of an array.

• Scalar product.
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Advantages & Disadvantages

The main advantages of the proposed framework are:

• Easy to understand (the pipeline and the quantum matrix/tensor).

• Good level of abstraction (from the applications perspective and the

implementation one).

• Efficient performance for operations on large structures.

Nevertheless, some drawbacks may arise for certain tasks:

• Perform operations on single elements −→ The efficiency depends

on the codimension.

• Multiplication of arrays −→ Unitary operators do not produce

multiplication.
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