A Crash Course on PYTHON Programming

I. Arregui, A. M. Ferreiro, J. A. Garcia & A. Leitao

Departamento de Matematicas, Universidad de La Corufia

July, 2019

https://sites.google.com/site/crashcourseonpython/

Index
Introduction to PYTHON
Variables and data types
PYTHON programming
Object—oriented programming
NuMPY: Numerical PYTHON
ScIPy: Scientific PYTHON
Bidimensional graphics with MATPLOTLIB
Pandas

Miscelanea

PYyTHON

> It is the most used programming language in GOOGLE

http://www.tiobe.com/
http://www.tiobe.com/

PYyTHON

> It is the most used programming language in GOOGLE

» Declared by TIOBE language of 2007, 2010 and 2018:
http://www.tiobe.com/

http://www.tiobe.com/
http://www.tiobe.com/

PYyTHON

> It is the most used programming language in GOOGLE

» Declared by TIOBE language of 2007, 2010 and 2018:
http://www.tiobe.com/

» Fourth most popular programming language (May, 2019):
http://www.tiobe.com/

http://www.tiobe.com/
http://www.tiobe.com/

References

» MARK LuTz. Learning Python. O’Reilly, 2013
» MARK LuTz. Programming Python. O’Reilly, 2006

» HANS PETTER LANGTANGEN. A Primer on Scientific Programming

with Python. Springer, 2009

HANS PETTER LANGTANGEN. Python Scripting for Computational
Science. Springer, 2008

» T. E. OLIPHANT. Guide to NumPy. 2006
> J. KIUuSALAAS. Numerical Methods in Engineering with Python.

vV v . v v

Cambridge University Press, 2005

http://www.python.org/doc
http://docs.python.org/index.html
http://docs.scipy.org/doc
http://matplotlib.sourceforge.net/

http://www.python.org/doc
http://docs.python.org/index.html
http://docs.scipy.org/doc
http://matplotlib.sourceforge.net/

Documentation sites

» Official doc about Numpy and Scipy:
http://www.scipy.org/docs.html

Among the many links,

> Documentation is moving to http://docs.scipy.org/doc/ where
you can download:

> Guide to Numpy: Travis Oliphant’s book
> Numpy Reference Guide: reference manual about functions,
modules and objects included in NumPy
> Most used Numpy commands:
http://www.scipy.org/Numpy_Example List

http://www.scipy.org/docs.html
http://docs.scipy.org/doc/
http://www.scipy.org/Numpy_Example_List

To practice with the contents of this course, we will need:
1. PYTHON (versions 3.x)
www.python.org
2. MATPLOTLIB (for 2D graphics)
www.matplotlib.org

3. ScIPy: Scientific Python
WWW.SCipy.org

4. I-PyTHON, Python advanced console
http://ipython.org/

Each of these pages informs about the way to install from zero,
including the dependences you need to compile

www.python.org
www.matplotlib.org
www.scipy.org
http://ipython.org/

In general, any PYTHON package includes an installation script.
Thus, you just have to write:

$ python setup.py install

in the command line.

Most of previous packages are available for main LINUX platforms
as .rpm (REDHAT/FEDORA/MANDRIVA/CENTOS) or .deb
(DEBIAN / UBUNTU)

Installation is automatic in UBUNTU (>= 7.10) from SYNAPTIC
or by apt-get.

It is also possible to install all these packages in WINDOWS and
MACOSX, as there exist compiled binary codes. For example:
> ENTHOUGHT: http://www.enthought.com/products/getepd.php

» PYTHONXY: http://www.pythonxy.com/download.php
» ANACONDA: https://www.continuum.io/downloads

Introduction to PYTHON

Variables and data types

PyTHON programming

Object—oriented programming

NuMmPY: Numerical PYTHON

SciPy: Scientific PYTHON

Bidimensional graphics with MATPLOTLIB
Pandas

Miscelanea

Some

features of PYTHON

PYTHON is a general purpose programming language, designed
by Guido van Rossum at the end of the 80’s

Clear and structured programming (for example, the tabulator is
part of the language)

Great productivity, high development velocity

Multiple programming paradigmes: object oriented, structured,
functional, ...

Portable (Linux, Windows, Mac OSX)

Interpreted, dynamic, strongly typed, automatic memory
management

Easy to learn
Large standard library: http://docs.python.org/library/

Easy to extend: link with C/C++ (SWIG, Weave, CPython),
.NET (IronPython), CORBA, Java (Jython), FORTRAN (£2py),

Large number of available packages

THE ZEN OF PYTHON
>>> import this

The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one —and preferably only one— obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea — let’s do more of those!

PYyTHON

Some applications:
» web development (Zope, Plone, Django, webpy, TurboGears,
Pylons, e-mail, RSS, ...)
» access to databases (pyodbc, mysqldb, ...)
» graphical user interfaces (Tk/Tcl, WxWidgets, Qt, FLTK, Gtk,
» games (PyGame, PyKyra)
» network applications: client—server (Twisted Python), ...

» graphical representation: 2D (MATPLOTLIB, CHACO), 3D (VTK,
MayaVi), ...

» scientific computing (NUMPY, ScIPY)
» XML processing, HTML, ...

It works on LiNUx / UNix platforms, WiINDOWS, Mac, JVM
(JYTHON), ... and there are implementations on the Nokia 60 series!

Where is PYTHON used?

> in GOOGLE, where it is one of the three development languages (with
C / C++ and Java)

» in YOUTUBE
» in BITTORRENT

> in animation: DREAMWORKS ANIMATION, PIXAR, INDUSTRIAL LIGHT
& MAcGIC

» the REDHAT / FEDORA installer (ANACONDA) is written in PYTHON

» ROCKSCLUSTER is a LINUX distribution for clustering, implemented on
CENTOSLINUX, that uses PYTHON scripts for node and users
management, among others ...

» Los Alamos National Laboratory and Sandia National Laboratories
have developed PYTRILINOS, PARAVIEW, ...

» SALOME and ABAQUS (CAD/CAE) and FEniCS (finite elements) use
PYTHON as standard script language

Some success stories: http://www.python.org/about/success/

http://www.python.org/about/success/

Why is PYTHON so extended?

» It is quite easy to develop wrappers which allow using almost
every software written in C / C++ and FORTRAN

> by means of the PyTHONC API
> by automatic generators: SWIG, SIP, Weave, 2py

PYTHON is very used as a glue

» Almost any free software library has its corresponding wrapper,
so that it can be used from PYTHON

» Documentation is very complete

> in the console, through function help
> in the different projects webs

» PYTHON community is very active
» SciPy Conference, once per year in USA and Europe
» PYCoN (in USA) and EUROPYTHON, annual conference
> in STAM Annual Meeting, an special session is often dedicated to
the use of PYTHON in scientific computing

Editors and command windows
Editors:

> gedit, vi, emacs, ...

» eric (http://eric-ide.python-projects.org/)
both of them include directory manager, help manager, debugger,...
» spyder
» Eclipse + plugin for PYTHON
(http://www.eclipse.org/ and http://pydev.org/)

Be careful with tabulators !
» the tabulator is part of the language sintax; PYTHON uses the
indentation to delimit code blocks (loops, if-loops, functions, ...)
» the standard tabulator has 4 spaces; all tabulators in the same
file must be defined in the same way

Command windows (consoles):
$ python
$ ipython
The second one is more developed

http://eric-ide.python-projects.org/
http://www.eclipse.org/
http://pydev.org/

Starting PYTHON

» In LINUX, we write
$ python
and we get the PYTHON prompt: >>>
Some utilities:

1 or |: get previous commands

Begin: we place at the beginning of the line
End: we place at the end of the line

Ctrl-D or quit (): exit from PYTHON

Starting PYTHON

PYTHON is a dynamically typed language, i.e., a variable can take
different values of different types in different moments

>>> a =5

>>> a = "Hello, world!"
>>> b = 5.678e-3
>>>a=Db + 1

>>> b = ’Bye’

Variable declaration is not needed

A first example

After entering the PYTHON console, we write:

>>>
>>>
>>>
>>>
(o,
17,
31,
45,
59,
73,
87,
>>>
5050

= o n o B
1]

100

range
sum (b)

> 2, 3: 4’

18,
32,
46,
60,
74,
88,
s

19,
33,
47,
61,
75,
89,

20,
34,
48,
62,
76,
90,

(n+1)

5, 6’ 7’ 8,

21,
35,
49,
63,
T,
91,

22,
36,
50,
64,
78,
92,

23,
37,
51,
65,
79,
93,

9,

24,
38,
52,
66,
80,
94,

10,

11,

12,

25, 26, 27,

39,
53,
67,
81,
95,

40,
54,
68,
82,
96,

41,
55,
69,
83,
97,

13,

14,

15, 16,

28, 29, 30,

42,
56,
70,
84,
98,

43,
57,
71,
85,
99,

44,
58,
72,
86,
100]

A first example

In a different way, we can edit a file (example01.py) with the
following contents;

My first Python code

n = 100

b = range (nt+1)

s sum (b) # s = sum (range (n+1))

print

print ’The sum of ’, n, ’ first natural numbers is:’, s

print

To execute it, we do:
$ python exampleOl.py
and we get:

The sum of 100 first natural numbers is: 5050

> If we need to use “different” characters —for example, fi, &, 6 (in
Spanish), or & (in Czech)—, we have to include the following line
in the head of the file:
encoding: utf-8

Help in PYTHON

Help in command line:

>>> help () In [1]: help O

help> In [2]: help (math)
help> modules In [3]: help (pylab)
help> keywords In [4]: help (plot)

help> topics
With the Return key or by CTRL-D, we return to the prompt.

In the I-PYTHON window, we can get help:

» with the tabulator:
In[1]: import numpy
In[2]: ¢ = numpy.|[TABULATOR]
» about a loaded package or function:
In[3]: help (name)
» about any package or function:
In[4]: help O
help> name

dir (obj): returns a list of the atributes and methods of any object

The I-PYTHON shell

The I-PYTHON shell admits, among others, the usual commands of a
LiNUX shell:

pwd

cd path, cd ..
1s, 1s -al

cat a00.py

cp a00.py aOl.py
mv a0l.py a02.py
rm a02.py

The PYTHON standard library

Some modules included in the PYTHON distribution
(see http://docs.python.org/library/)
> sys: system-specific parameters and functions

> sys.argv
> sys.exit
> sys.stdin, sys.stdout, sys.dtderr

» os: miscellaneous operating system interfaces
time: time access and conversions
» math: mathematical functions
» math.sin, math.cos, math.exp, ...
random: pseudo-random numbers generations
string: common string operations

z1lib, gzib, zipfile, tarfile: file compression

vV VvyVvVvyy

email, mailbox, ssl, socket, webbrowser, smtpd, ...: e-mail tools, network,
internet protocols, ...

v

audioop, imageop, wave, ...: multimedia services

» xml.dom, xml.sax, XML and HTML parses

http://docs.python.org/library/

Some

vV v . vvY

scientific computing libraries

numpy:

» powerful n—dimensional arrays management
> linear algebra basic functions
» Fourier transforms
» random numbers generation
scipy:
> linear systems solvers
> sparse matrices

» numerical integration, optimization
» ODE’s solvers

MatPlotLib: two dimensional plots representation
tvtk: VI'K wrapper
mayavi2: 2D and 3D visualization tools

quantlib:

Other simple examples

Let us edit a file a00.py with the following contents:

import math

a = input (° Introduce an angle: ’)

x = math.cos (a)

print ’Cosinus of an angle: °’

print °’ cos (P + str(a) +7’) =’ + str (x)

To execute it, we write:
$ python a00.py
we will get:
Introduce an angle:
and if we write, for example, 3.141592654, we will obtain:
Cosinus of an angle:
cos (3.141592654) = -1.0

Other simple examples

Another way of doing the same thing is:

import sys, math
import math
a = float (sys.argv [1])

x = math.cos (a)
print ’Cosinus of an angle: °’
print °’ cos (7 + str(a) +7) =’ + str (x)

To execute it, we write:
$ python a00.py (we will get an error)
$ python a00.py 3.141592654
and we will have:
Cosinus of an angle:
cos (3.141592654) = -1.0

Other simple examples

And a different way to show the result is:

result = ’ cos (%kg) = %12.5e’ % (a,x)
print result

which gives us:
cos (3.14159) = -1.00000e+00

It can also be executed in the I-PYTHON console:
In [1]: run a00.py 3.141592654

Introduction to PYTHON

Variables and data types
Tuples and lists
Dictionaries
Copy of objects

PYTHON programming

Object—oriented programming

NuMPY: Numerical PYTHON

SciPy: Scientific PYTHON

Bidimensional graphics with MATPLOTLIB
Pandas

Niceolanea

Variables

A variable is a space of memory in which we store a value or set of
values; each variable is given a name and can have different types
(scalar, list, array, dictionary, string, ...)

PYTHON is a dynamically typed language: variables can take
different values, of different types, in different moments

> the result of an expression is assigned to a variable by the
assignement operator (=); e.g.,
>>> 5 +2; b=3x%4

computes de addition (not assigned to any variable) and makes b
take the value 12

» to continue an expression in the following line, we use the
backslash (\)

» we are not obliged to initially declare the variables
» PyTHON distinguishes between capital and lower case characters

» the names of variables start by an alphabetic character

Variables and workspace

A variable can be destroyed:
>>> del x

The type command is used to know the type of a variable:

>>> type (a)

The workspace is the set of variables and user functions in the
memory

In the I-PYTHON shell,

> the who command is used to examine all the variables existing in
the current instant and the imported packages

» whos gives some details on each variable

Data types: logical variables

They can take two values: True or False.

>>>m = True

>>>a =0; b = -4; # a and b are integer variables
>>> type (a); type (b)

>>a =0.; b =-4.; # a and b are real variables

>>> type (a); type (b)

>>> xa = bool (a) # xa is a logical variable, which value is False

>>> xb = bool (b) # xb is a logical varialbe, which value es True
>>>cl = (b == True) # The result is False

because b is not a logical variable
>>> ¢c2 = (xb == False) # The result is False

because xb takes the value True
>>> c3 = (xb = False) # We get an execution error

Data types: the None variable

Designes an empty object.

For example

>>> a = None
we create variable a, which contains nothing and can later be of any
type (numeric, string, class object, ...); to check it, we can do:

>>> a 1is None

We can also create an empty list, dictionary or tuple by:
>>> a1l = [1; a2 ={ }; a3 = O

>>> a # Whe check the value of a
We get no answer because a=None
>>> a = 4.5; # We assigne a real value

Data types: numerical variables

They can be:
> integer (between —2147483648 and 2147483647): 0, 283, -5
» long: >>> i = 22L
» double precission, real: 0., -2.45, 1.084E+14
» double precission, complex: a = 1.-4j, b = complex(7,-2)

where j is the imaginary unit (j = v/—1).

We can get the real and imaginary parts of a complex:

>>> b.real

>>> b.imag

When operating two numerical variables, the result takes the type of
the “highest cathegory” operator

Data types: strings

They are enclosed in single or double quotes

>>> s ’Hello, world!’
>>> t = ’And he said: "Hello, everybody!"’
>>> print s

A short example, with specific functions:

from string import * s01 = s1 + s2 + s3; print s01
sl = ’First string’ s02 =81+ 7 +s82+ 77 + 83
s2 = ’Second string’ print s02

s3 = "Third string" print split (s01, sep=’ ’)
print ’> s1 =, si1 print count (s01,’st’)

print ’ s2 = 7, s2 print capitalize (s02)

print > s3 = ’, s3 print lower (s01)

print replace (s02,’t’,’p’)

Data types

>>>
>>>

>>>

>>>

>>>

>>>

>>>

>>>
>>>

a

b =

Cs

ms

bd

di

bc =
dc =

’Welcome message’
4; ¢ = 130L; d = 4.56789; m = 4.2-8.424j

= str (c) # ’130°
ds =
= str (m) # °(4.2-8.4245)°

str (d) # ’4.56789’°

float (b) # 4.0
can be applied to strings of numerical characters,
integers and complexes with no imaginary part

int (d) # 4
returns the nearest integer towards zero;
can be applied to strings of numerical characters,
and complexes with no imaginary part

complex (b) # 4+0j

complex (d) # 4.56789+0j

Tuples and lists

Tuples and lists allow the storing of an arbitrary sequence of objects

The stored objects may be of different types: string, numbers, other
lists or tuples, ...

We access each element by an index, which indicates the position of
the element in the list or tuple

> indexes always start in zero

Difference between tuples and lists:
» A tuple can never be modified

» In a list, we can change, add and delete elements

Tuples

A tuple is an arbitrary sequence of objects, enclosed in parentheses
and separated by commas, ()
The numbering of indices starts at cero

>>>x = () # Empty tuple

>>> x = (2,) # Tuple of one only element
>>> x = (1, 4.3, ’hello’, (-1,-2))

>>> x[0] # We get the first component
1

>>> x[3], x[3][1]

(-1, -2), -2

>>> x[-2] # Starting from the end
’hello’

>>> y = 2,3,4 # Parentheses can be omitted
>>> z = 2, # Tuple of an only element

len (x): length of a tuple
max (x), min (x): maximum/minimum of a tuple
tuple (seq): transforms seq in a tuple

>>> tuple (’hello’)

(’h’,’e’,?17,°17,%0")

Lists

A list is an arbitrary sequence of objects, enclosed in brackets and
separated by commas, []
The numbering of indices starts at cero

>>> x = [] # Empty list

>>> x = [1,4.3,’hello’,[-1,-2], ’finger’ ,math.sin, [-0.4,-23.,45]]
>>> x[0]

1

>>> x [3], x [3][0]

-1, -21, -1

>>> x[-3] # Starting by the end

’finger’

>>> x [2:4] # Returns a (sub)list: [x[2], x[31]
[’hello’, [-1,-2]]

>>> x[4:]

[’finger’, <built-in function sin>, [-0.4,-23,45]]
>>> x[7]

Traceback (most recent call last):
File "<input>", line 1, in ?

IndexError: 1list index out of range

Useful list functions

range ((first,)last(,step)): creates a list of integers, since
first until last (not included!) with step step.

» if first is not given, it starts in zero
> if step is not given, the step is one
>>> range (-1, 5, 1)
[-1, 0, 1, 2, 3, 4]
>>> range (-10, 10, 2)
[-10, -8, -6, -4, -2, 0, 2, 4, 6, 8]

len(x), max(x), min(x)
>>> x = [-120, 34, 1, 0, -3]
>>> len (%) # Number of elements of x
5
>>> max (%)
34
>>> min (x)

-120

Managing lists

map (func,x1list): applies function func to every element of x1ist
>>> x = [’Felix’,’Graziana’,’ROBERTA’,’1ulS’]
>>> map (string.lower,x) # writes all strings in lower case

[’felix’,’graziana’,’roberta’,’luis’]

The following methods can be applied to any object of type list:
» append(obj): adds an element (obj) at the end of the list

» extend(obj): adds the elements of list obj to the current list

>>> z = [1,2] >>> z.extend ([20,’hello’,-40])
>>> z.append ([’dog’,’cat’]) >>> z
>>> z [1,2,[’dog’,’cat’],20, ’hello’,-40]

[1,2,[’dog’,’cat’]] >>> z + [20,’hello’,-40]

Managing lists

x.insert(j,obj): inserts an element obj in position j of the list
x.remove (obj): finds the first element coincident with con (obj) and
removes it from the list

x.pop(j): if an index (j) is given, it removes the element in its position; if
not, it removes the last element

x.reverse(): writes the list in inverse order

x.sort(): sorts the list

>>> x = [1,’hello’,[2,3.4],%good’,[-1,0,1], bye’]
>>> x.remove (*hello’)

>>> x >>> x.insert (2,’text’)
[1,[2,3.4],’good’, [-1,0,1], bye’] >>> x

>>> x.pop (1) [1,’good’, text’,[-1,0,1], bye’]
[2,3.4] >>> x.pop ()

>>> x ‘bye’

[1,’good’, [-1,0,1], bye’] >>> x

[1,’good’, text’, [-1,0,1]]

Managing lists
We can create a list with all elements equal:
>>n =25
>>> x = 0.25

>>> a

[x]*n
>>> a
[0.25, 0.25, 0.25, 0.25, 0.25]
A string can be considered as a list:
>>> s = ’Hello, world’
>>> s[0]
TH
>>> s[1]
1)
>>> s[-1]
g
We can convert an object into a list: >>> list(obj)
>>> x=(1,2,3); y=list(x)

Exercise 1

v

We create two empty lists to store names and identity card

numbers:
>>> names = []

>>> idnumbers = []

We add data to each list:

>>> idnumbers.append (’33807659D’);

>>> idnumbers.append (’32233322K’)

>>> names.append (’Franz Schubert’)

>>> names.append (r’Claudio Monteverdi’)

v

> We create a list with the two previous lists:
>>> data = [idnumbers, names]
» We access the data:
>>> datal[0]
>>> datal[1]
>>> datal0] [1]

Exercise 2

Create a list with the first terms of Fibonacci sequence

>>> a = [0, 1]

>>> a.append (al[0] + al[1])
>>> a

>>> a.append (al[1] + a[2])
>>> a.append (al[2] + a[3])
>>> a.append (a[3] + al4])
>>> a.append (a[-2] + a[-1])
>>> a.append (a[-2] + a[-1])
>>> a.append (a[-2] + a[-1])
>>> a.append (a[-2] + a[-1])

Exercise 3

For a 2-D mesh, we want to create:

| 4

>

v

a list of nodes, with the two coordinates of each

a list of elements, with the indices of the vertices

Coordinates:
>>> nodes = [[0., 0.1, [
0., 1.1, [2., 0
>>> nodes [0] # [0.,
>>> nodes [2] # [1.,
>>> nodes [5] # [2.,
Elements:
>>> conec = [[0, 1, 2],
>>> conec [2]
>>> conec [3]
>>> nodes [conec[0][2]]

1., 0.1, [1., 1.1, \
1, [2., 1.1]
0.]
1.]
1.]

[O’ 2’ 3], [1’ 4’ 5]’

[1., 1.]

[1, 5, 211

Exercise 3

Another possibility:

» Coordinates:

>>> nodes = [(0., 0.),
., 1), (2.,

>>> nodes [0] # (0.

>>> nodes [2] # (1.

>>> nodes [5] # (2.

» Elements:

>>> conec = [[0, 1, 2],

>>> conec [2]

>>> conec [3]

>>> nodes [conec[0] [2]]

o, 2, 31, [1, 4, 5],

(1., 1.)

1, 5, 21]

Dictionaries

A dictionary allows to store an arbitrary sequence of objects

> We access its elements through keys, which are variables of any
type (not only integers)

» The elements are sorted by keys alphabetical order

Exemple:
>>> x
or:
>>> x
>>> x

>>> x

>>> x

{ keyO1:

={}
[key01]
[key02]

{ keyO1:

’first element’ }

empty dictionary
’first element’

25.50

’first element’, key02: 25.5 }

Dictionaries

Other example:

>>> clients = {’Smith’: [’Adam Smith’,38,°44000111D’],
’roberts’: [’Mary Roberts’,17,’33221998L°]}

>>> clients[’roberts’]

[’Mary Roberts’,17,’33221998L°]

How to add, modify and delete elements?
>>> clients [’white’] = [’Charles White’,23,’44555111L°] # add

>>> clients [’smith’] = [’Adam Smith’,29,°44000112D’] # modify
>>> del clients [’roberts’]

>>> clients

>>> namedict.has key (namekey): returns True if the dictionary
namedict has the key namekey; otherwise, it returns False

Dictionaries

len (ndic): number of elements of the dictionary ndic
ndic.keys (): returns a list with the keys
ndic.values (): returns a list with the values
ndic.items (): returns the contents in tuples

ndic.update (ndic2): adds the elements of one dict. to another

vV v v v Vv Y

ndic.clear (): deletes all the elements of ndic

For example,
>>> clients = {’wagner’:[’R. Wagner’,19],
’byrd’: [’W. Byrd’,45], ’white’:[’C. White’,23]}
>>> clients.keys()
[’wagner’,’byrd’,’white’]
>>> len (clients)
3
>>> clients.clear()

>>> clients

{1}

Exercise

In the previous 2-D mesh, make a dictionary of the elements

>>> elem = { }
>>> elem[0] = [0, 1, 2]

>>> elem[1] = [0, 2, 3]
>>> elem[2] = [1, 4, 5]
>>> elem[3] = [1, 5, 2]

>>> elem

>>> elem.keys ()
>>> elem.values ()
>>> elem.items ()

Value copy
A value copy of a list/tuple/dictionary is a different object with the same
content than the original one; the new object points to a different
memory position

>>> L1 =[1, 5.5, 4]

>>> L2 = L1[:] # A copy of the list

>>> L2 is L1

False

>>> L2.append (100) # If we modify L2, then L1 doesn’t change
L3 L2

L1
N R

Another way of doing the same process is by means of the copy function:
>>> import copy
>>> L1 = {’a’:1, ’b’:22, ’c’:4}
>>> L2 = copy.copy (L1)
>>> L2 is L1
False
>>> L1[’d’] = 88 # If we modify L1, then L2 is not affected

Reference copy

By a reference copy, we create an object that points to the same
memory position of the original object

>>> L1 = [1, 5.5, 4]

>>> L3

L1 # Creates a new variable, that points to L1
>>> L3 is L1

True

If we modify L3, then we also modify L1:
>>> L3.append (100)
>>> L1
[1, 5.5, 4, 100]
If we delete L1, then L3 is not deleted:
>>> del L1; L1

Traceback (most recent call last):

File "<input>", line 1, in ?

NameError: mname ’L1’ is not defined
>>> L3
[1, 5.5, 4, 100]

Introduction to PYTHON
Variables and data types

PYTHON programming
Control sentences
Functions
Modules
The standard library
Input / output
Exceptions

Object—oriented programming
NuMPY: Numerical PYTHON
SciPy: Scientific PYTHON

Bidimensional graphics with MATPLOTLIB

PYTHON programming

Names of the files: namefile.py
They contain sequences of commands and orders

. Functions
Script

. » its structure is:
» they are executed by typing:

. def namefunc (x1,x2,...):
$ python namefile.py
or return [a,b,c]
In[1] run namefile.py > they are executed by a call from

a script, another function or the
command window (PYTHON or
I-PYTHON shell)

They are recursive

Compiling and linking are not necessary

Bifurcations (if)

if condition: if conditionl: if conditionl:
sentence(s) sentence(s) sentence(s)
elif condition2: elif condition2:
sentence(s) sentence(s)
elif ...
else:
sentence(s)
» Conditions can be boolean, scalar, vectorial or matricial; in this
case, vectors and matrices must have equal dimensions
» They can be imbricated
» Only a block of sentences is executed
» Operators:
< <= > >= == I= or and not
» IMPORTANT: Indentation must be done with the tabulator !!!

Bifurcations

The result of each condition will be True or False.

In particular, if we do
if var
where var contains a variable, the result will be:

» False, if var is:

> the None variable

a numerical variable, with value zero
a boolean variable, with value False
an empty tuple, list or dictionary

vvyy

» True, otherwise

Loops

for i in range (i1,i2,step): while (condition):
sentence(s) sentence(s)
> if step is one, it can be omitted

» if i1 is zero and the step is one,
they both can be omitted

for item in ObjIt:
sentence(s)

where ObjIt is an iterable object

Indentation must be done with the tabulator!

1| import math

2| methods = [math.sin, math.cos, math.tan, math.exp]

3| for k in methods:

4 print k.__name__, ’(pi)= ', k (math.pi) # Python 2.x

5 # print (k.__name__, ’(pi)= ', k (math.pi)) # Python 3.x

Loops

We can use several lists simultaneously:

1| for x, y, z in zip (xlist ,ylist ,zlist):
2 print x, y, z # Python 2.x
print (x, y, z) # Python 3.x

» In this case, the number of iterations will be the dimension of the
shortest list

Loops can be imbricated:

| for 1 in range (il,i2,stepl):

2 for j in range (jl1,j2,step2):

3 print al[i][]] # Python x.x
! # print (a[i][]]) # Python 3.x

Two important commands:
break: quits the inner loop

continue: starts a new iteration of the same loop

switch

PYTHON has not the command switch, but we can do something
similar by a dictionary:

1| from math import x*

2

3l num = pi

4/menu = {’1’: cos, ’2’: sin, ’'3’: exp}

5| choice = input (”Choose an option [1 / 2 / 3]”)

6| val = menu [choice] (num)

7| print "%s (pi) = %f’ % (menu[choice].__name__, val)

8 # Python 2.x

o|# print ("%s (pi) = %f’> % (menu[choice].__name__, val))
10 # Python 3.x

Exercises

Write a PYTHON code (“days.py”) which read a date (day, month
and year), check if it is correct and write it in the screen.

1 import types

2|y = input (’Write the year:)

3| if (y <= 0 or type (y) != types. IntType):

4 print ’The year is not correct ... # Python 2.x

5 # print (’The year is not correct ... ') # Python 3.x
or:

1| import types

oly = —1

3| while (y <= 0 or type (y) != types. IntType):

4 y = input (’Write the year:

5| print 'The date is: \%2d.\%2d \%4d’> \% (d,m,y)

6|# print (’The date is: \%2d.\%2d.\%4d” \% (d,m,y))

Exercises

B W N =

In the previous code, compute the sum of the days of the months
previous to the current one.

aux = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
total = 0
for i in range (0,m—1):
total = total + aux (1)
or:

aux = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
total = sum (aux(0:m—1))

Exercises

In the previous code, determine if the current year is a leap—year and
modify the code to get the correct result.

ib =20

2 if (y % 4 = 0):

3 b =1

4 if (y % 100 = 0 and y % 400 != 0):

5 b=0

6laux [1] 4= D # aux [1] = aux [1] + b

Functions

Their structure is:
def f (x1,x2,x3):

yl= ... y2= ...
return [y1, y2]

They can return any type of variable: string, scalar, list, tuple, array,
class object, class instance, ...

They admit a variable number of arguments
y=1f (a, b, ¢, d, p, q, r, S)
def £ (x1, x2, x3, *x4):

if len (x4) ==

Default arguments are allowed:
def f (x1, x2, x3=1.0, x4=None):

Functions

We can give, as argument of a function, the name of another function

import math as mt

def f (x): a = range (-5,6)

return x**2 opt =1

if opt ==

def g (x): print func (a,f)

return x**3 elif opt ==

print func (a,g)

def h (x): else:

return mt.sqrt (abs(x)) print func (a,h)

def func (x,f):
map (f,x)

Functions: recursivity

A function can be called by itself

1| import types
2| def fact (n):

if type (n) != types.IntType:
4 return —1
5 else:
6 if n = 0:
7 return 1
8 else:

9 return nxfact (n—1)

lambda functions

The lambda expression is used to define simple functions inline

1| lambda argl, arg2, ., argN: expression

1|>>> f = lambda x, y: xxy

2[>>> f(2,3)

3| 6

1|>>> import math

5|>>> g = lambda x, k = 1.0, a = 1.: k * math.exp (axx)
| >>> g (2, a=-1)

71 0.1353352832366127

lambda functions

» lambda functions are often used to codify jump tables, which are
actions stored in lists or dictionaries, to be executed when needed

import math

LF = [lambda x : math.sin (x) ,
lambda x : math.cos (x) ,
lambda x : math.exp (x / math.pi)]

for f in LF:
print { (math.pi) # Python 2.x
print (f (math.pi)) # Python 3.x

print LF [1](2.% math.pi)
print (LF [1](2.% math.pi))

Functional programming tools

>

oA W N e

oA W N e

map (func, seq): applies a function to a sequence of data

In Python 2.x:

>>> map (lambda x : xxx2 , [1, 2, 3])

In Python 3.x:

>>> list (map (lambda x : xxx2, [1, 2, 3]))
[1, 4, 9]

filter (func, seq): filters the elements of an iterable object

In Python 2.x:

>>> filter (lambda x : x > 0, [—1, 3, —4, 5])

In Python 3.x:

>>> list (filter (lambda x : x> 0, [—1, 3, —4, 5]))
[3, 5]

reduce (func, seq): applies a two arguments function,
func(x,y), in a cumulative way to the elements of an iterable
object, seq, from left to right, to reduce it to an only value

>>> from functools import reduce # Only in Python 3.x

>>> reduce (lambda x, y : x+y, [-2, =3, —4, —5])
—14 # computes : ((=24+(—3))+(—4))+(-5)
>>> reduce (lambda x, y : xxy, [—2, =3, —4, —5])

120 # computes : ((—2x(—=3))*(—4))*(—=5)

Working with our modules
In file norms.py we implement three functions that compute the
one—norm, two—norm and infinity—norm of a list of numbers

L =[zg,...,xn):
I =Sl Dl = g el 1) =

File norms.py

encoding: utf-—8

N I

5| def nl (L): # L is a list
6 return reduce (lambda x, y : abs (x) + abs (y), L)

s| def ninf (L):
9 return max (map (abs, L))

11| import math
12| def n2 (L):
13 return math.sqrt (sum (map (lambda x : x*%2, L)))

Working with our modules

>

w N

In order to instantiate the methods of the norms.py module from
the file main.py (both lying in the same directory), we must first
“import” the module: import norms

File: main.py

import norms

L=[-1, 2, 3, —5]

print > L =, L

print > norm 1 (L) = 7, norms.nl (L)
print ’ norm 2 (L) = ’, norms.n2 (L)
print ’ norm Inf (L) = ’, norms.ninf (L)

The sentence from ModuleNameimport ModuleAttribute allows
to import the indicated function (or functions):

from norms import ninf
print ninf ([—2, —20, 10, 50])
print nl ([—-2, —20, 10, 50]) # Error!

from norms import ninf , nl , n2
print ninf ([—-2, —20, 10, 50])

print nl ([—2, —20, 10, 50])

PYTHONPATH

The place where PYTHON stores the path of the modules that can be
imported is the environment variable PYTHONPATH

We can modify it in several ways:

» In bash, for example, we can add the following lines to the file
.bashrc:

export PYTHONPATH=$PYTHONPATH:/mydirl:/mydir2

» In the PYTHON code, the simplest way is:

import sys
sys.path.append ("/home/me/mydiril")
sys.path.append ("/home/me/mydir2")

The standard library: os module

os module contains many functions for files and processes managing.

os.path: paths and files managing

os.mkdir (’subdir4d4’)

os.getcwd () # the directory where we are
os.chdir (’subdir44’)

os.chdir (os.environ[’HOME’])

os.rename (’ficOl.py’,’fic02.c’)

os.remove (’fic02.c’)

os.listdir (os.curdir) # files in the directory
os.listdir (’/home/me/dir2’)

operating system functions: os.kill, os.execv, ...

The standard library: sys module

> sys.argv: list of arguments received by a script in the command
window

> sys.exit: exit from PYTHON

» sys.stdin, sys.stdout, sys.stderr

import sys

1
s3|# Data given by keypad
4

data = sys.argv [:]
6| print ’'data: ’, data # Python 2.x
7|# print (’data: ’, data) # Python 3.x
8
o| print (”We have passed %d entry arguments to %s code: 7 % (

len(sys.argv)—1, sys.argv[0]))
10| for arg in sys.argv[1l:]:

11 print 7 %s” % arg

12 # print (7 %s” % arg)

The standard library: time measure

PYTHON provides the data and time in three different formats:

> as a tuple: year-month—-day—hour-minute-second—day of the
week—day of the year—X (tup)

> as a string (str)

> as the total number of seconds from the origin (sec)

time (): current instant

clock (): elapsed time from the beginning of the execution
sleep (n): pause, n seconds

gmtime (): GMT hour

localtime (): local hour

asctime (tup): transforms the tuple in string

strftime (tup): transforms the tuple in string

mktime (tup): transforms the tuple in seconds

ctime (sec): transforms the seconds in string

strptime (str): transforms the string in tuple

Interactive 1/0

Data reading by keyboard in PYTHON 2.X:
x = raw_input (’message’)
’message’ is written in the screen and waits until a data is
provided; it is stored in x variable as a string.

We cannot operator with x
>>> x = raw_input (’Introduce a number: ’)

124.5
y = x**2 is not possible, because x=’124.5°
We should do: y = float(x)**2
x = input (’message’)
’message’ is written in the screen and waits until a data is
provided; PYTHON tries to evaluate it in order to store it in a

correct x variable

This way, we can operate with x:
>>> x = input (’Introduce a number: ’)

124.5
>>> y=x**2

Interactive 1/0

Data reading by keyboard in PYTHON 3.X:

X

input (’message’)
’message’ is written in the screen and waits until a data is
provided; it is stored in x variable as a string.

We cannot operate with x
>>> x = input (’Introduce a number:)

124.5
y = x**2 is not possible, because x="124.5°
We should do: y = float(x)**2

Interactive 1/0

Non formatted data writing (in PYTHON 2.X):
>>> print ’message’, varl, var2, ..., vark

message and the values of varl, var2, ..., vark are written in
the screen
Variables are separated by a blank:

>>> nm = ’Andrew’

>>> age = 45

>>> print ’Name, age = ’ , nm, age
Name, age = Andrew 45

>>> print ’Name = ’, nm, ’ age = ’, age

Name = Andrew age = 45

Interactive 1/0

Non formatted data writing (in PYTHON 3.X):

>>> print (’message’, varl, var2, ..., vark)
message and the values of varl, var2, ..., vark are written in
the screen

Variables are separated by a blank:
>>> nm = ’Andrew’
>>> age = 45
>>> print (’Name, age = ’ , nm, age)
Name, age = Andrew 45
>>> print (’Name = ’, nm, ’ age = ’, age)

Name = Andrew age = 45

Interactive 1/0

Formatted data writing:

print ’Msgl = %formatl, Msg2 = Yformat2’ 7 (varl,var2)
#print (’Msgl = %formatl, Msg2 = Yformat2’ % (varl,var2))
where format describes the way in which we want to representate
each variable:

%i or %d: integer

%f: float in decimal format

%e: float in exponencial format
%g: non leading zeros are removed

%s: string

>>> name = ’Joe’

>>> s = 50.5

>>> print ’%s earns)7.2f euros a month’ 7 (name, s*30.)
>>> print (°%s earns %7.2f euros a month’ 7 (name, s%*30.))

Joe earns 1515.00 euros a month

Raw strings

Sometimes, we need to store strings with special characters; for
example:

pathl = ’C:\\\\Windows\\\\Temp’

rint ’ In Windows, you can find the file in ’, pathil
p y p

Other special characters are \n (break line), \t (tabulator), ...,

We can manage these strings as raw strings:
pathl = r’C:\\Windows\\Temp’

Text files reading

» File identification: idf = file (pathfile,’r’)
If the file doesn’t exist, PYTHON returns an error
>>> idfl = file (°filel.txt’,’r’)
>>> idf2 = file (’/home/arregui/python/file2.dat’, ’r’)
» One line reading;:
>>> text = idf.readline ()

in variable text we store the first line of the file *filel.txt’,
plus the line break (\n)

>>> idf.readline ()
’1 2 3.456 8.001 —99.01\n’

» Whole file reading;:
>>> text = idf.read ()

Returns a string with the contents of the whole file; por example

>>> idf.read ()
’F1 F3 F5\nReading a file\n’

Text files reading

» We can start reading at any point of a file; for example, at the
beginning:
>>> idf.seek (0)
In general, seek (n) locates the pointer n bytes away from the
beginning
» We can read all the lines of the file:
>>> idf.readlines()
and we get a list of strings
>>> lines = idf.readlines()
>>> lines[1]
’F1 F3 F5\n’
» To close the file, we do:
>>> idf.close()

and we can delete the file identified by idf:
>>> del idf

Text files writing

Creation of the file object:
idf = file (filepath,’w’)
If the file does not exist, it is created

For adding text, we do:
idf.write (string)

>>> idf.write (’First line of the file \n’)

If we write again, the new string is added to the file

>>> idf.write (""" I am writing
a multiline. This is a test.
End IIIIII)
To close de file, we do:
idf.close ()

If we open the file, (from the LINUX shell, before it is closed from
PyTHON, we will see it empty

Numerical files reading and writing
If all the lines have the same number of columns, we can use the
loadtxt and savetxt commands, availables in NUMPY library
loadtxt reads a file and returns an mxn array (where m and n
are the numbers of lines and columns, respectively, of the file)
A = loadtxt (path[,delimiter=None]))

from numpy import loadtxt, savetxt, array
filename = ’matrix.txt’
3]A = loadtxt (filename)

oo

savetxt saves a matrix in a file:
savetxt (filename, A (,fmt=’Yformat’, delimiter=’symb’))
where:
format indicates the format in which we want to represent the
variable: %i, %d, %£, %e, %g
symb indicates the character that will separate the columns in
each line; by default, it is a blank space

A = array ([[2.3, —4.4, 0], [—20, 4.4, —1]])
2| savetxt (‘matrix2.txt’, A, fmt="%7.2f ", delimiter=",")

;)

Numerical files reading and writing

If the number of columns is not the same in every row, we have to
read each line:
from string import split
k=1
while (k>0):
s = split (f.readline())

if (8):

a = map (float,s)
else:

k= -1

where:

» split(s(,’;’)): method of the string module that splits a
string in words, separated by blank spaces (by default) or by the
provided symbol

» map: function that applies another function to every element of a
list

Exceptions
We can distinguish between two kinds of errors:
> Syntax errors
>>> while True print (’hello’)
File "<stdin>", line 1
while True print (’hello’)

SyntaxError: invalid syntax
In this example, the colon (“”) is missing
» Exceptions
>>>5 /0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

Exceptions can be captured:
try:
sentences
except [TypeException]:
sentences

Exceptions (example I)

>>> 3./ 0.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: float division

Exceptions (example I)

>>> 3./ 0.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: float division

Control of the error:

a=>5.0
b =20.0
try:

res=a/b
except ZeroDivisionError:

print (’Division by zero’)

Exceptions (example II)
>>> f = open (’myfile.txt’)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

I0Error: [Errno 2] No such file or directory: ’myfile.txt’

Exceptions (example II)

>>> f = open (’myfile.txt’)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

I0Error: [Errno 2] No such file or directory: ’myfile.txt’

Control of the error:

import sys

try:
f = open (’myfile.txt’)
s = f.readline ()
i = int (s.strip O)

except IOError, (errno,strerror):

print ("I/0 error (%s): Y%s" Y’ (errno,strerror))
except ValueError:

print ("The data cannot be converted to integer")
except:

print ("Error:", sys.exc_info()[0])

Exercises

1. Write a PYTHON code that:
(a) reads the components of a vector

> from the screen
> from a file

(b) computes its harmonique average a:

(¢) computes its norms:

n 1/2
llallz = (Zlail2>

lalloo = max la;
i=1 n

=1,...,

Exercises

2. Solve the equation:
flx)=2°—-382>-4=0 xz€(-2,25)

by the bissection method: aq, by given,

1
Tp = §(ak¢ + by)

Q41 = Gk

brt1 = T%

si f(zg)f(ag) <0 = {

si f(zp)flbe) <0 = {OFFET Ik
bry1 = by

Exercises

< (-1
3. Consider the (convergent) numerical series: S = >

VI +4n

Write a PYTHON code that computes its sum with an error less
than a given parameter.

4. Write a PYTHON code that reads a date (day, month, year),
check if it is a correct date and computes the days since January
1st of that year.

5. Compute the age of a person in days

Which are leap—years? Multiples of 4, unless multiples of 100
which are not multiples of 400

Exercises

6. Write a PYTHON code that generates a dictionary with:
> titles and production year of films
» names of directors
» names of actors
and show the information of the films sorted by:
> key
> date
> director name

Introduction to PYTHON
Variables and data types
PYTHON programming

Object—oriented programming
Introduction
Heritage
Further topics

NuMPY: Numerical PYTHON

SciPy: Scientific PYTHON

Bidimensional graphics with MATPLOTLIB
Pandas

Niceolanea

Object—oriented programming

Object—Oriented Programming (OOP) is a programming
paradigm that tries to represent entities (objects) grouping data and
methods that describe their features and behavior

In OPP, programs are organized “as in the real life”, by means of
classes and objects that interact with them
For example, let us consider the points (1,2), (3,4) y (5,7)

> all of them are different
» but they have all two coordinates, with different values

» and we can apply the same methods (functions) to all of them

OOP advantages
» The code is much simpler to write, maintain, re-use and extend
» Creating more complex codes is easier

» The implementation of the codes is related to the “organization
of the real world”

Object—oriented programming

v

A class is a sort of template, where attributes and methods are
defined
Classes are not manipulated directly; they are used to define new
types (instancias) of the class or objects
For example, a class could be the plan of a house; it is generic.
The instances are the different houses that can be built from the
plan
A class method is a function that can be applied to any instance
of the class. A class attribute is a variable associated to each
instance (a property)
A method and/or attribute is public if it is accesible at any

point of the code, and it is private if it is only accesible by the
methods of the class

Object—oriented programming

OQP is posible in PYTHON

» Creation of a class: class ClassName:

» A class has an init method, which is used to create instances of
the class

class ClassName:
def __init__ (self,args):

» By convention, the first argument of a class method is self,
which is a pointer to the class; it is equivalent to this in C++
or JAVA

> It is not a reserved word, but it is used by convention

» Although self must be the first argument of a class method, we
do not need to include it as PYTHON invokes it automatically

Instances of a class

» For creating an object, or instance, of a class we have just to
invoke the class as if it was a function, giving it the arguments of
the _init__ method

» The returned value is the created instance

1| class point:

2 def __init_-_ (self, x, y):

3 self.x = x # attribute
4 self .y =y # attribute

6| pl = point (0.0, 1
7| p2 = point (3.0, 5.
s| print (’pl is p2: 7, pl is p2)

Operator overloading
» PYTHON does not allow the method overloading (C++ and JAva

do)
» But operator overloading is allowed: we can redefine operators as
+, —, x, /, print, for example
Method Overload How to call it
__init__ Initializer A = ClassName ()
_del__ Destructor del A
_str__ Printing print (4), str(d)
__call__ Evaluates the object in the args A(args)
_-add-- + operator A+B, A +=B
_-sub__ - operator A-B, A -=B
_mul__ * operator AxB, A *=B
_div__ \ operator A\B, A\=B
__pow__ ** operator AxxB, pow(A,B)
__eq__ == operator A ==
1t < operator A <B
__comp__ Comparison A==B, A<=B,A>=B, A<B,A>B, A!=B
_or__ | (OR) operator AlB
_getitem__ Gets the value of k index Alk]
__setitem__ Assigns a value to k index Alk] = value
_getattr__ Gets an attribute A.attribute
__setattr__ Sets the value of an attribute A.attribute = value

Example: a point class

1
>
3

[CENVERN

class point:

def

def

def

def

def

__init__ (self, x=0, y=0):
self .x = x
self .y =y

print (self):

print ' Point: (7, self.x,’ , 7, self.y,’
print (> Point: (7, self.x,’” , 7, self

modify_coord (self, newx, newy):
self .x = newx
self .y = newy

move (self, u, v):
self .x += u
self .y 4= v

newpoint_move (self, u, v):
p2 = punto ()

p2.x = self.x + u

p2.y = self.y + v

return p2

))

Y

Example: a point class

1 def __add-_ (self, p):
2 self .x += p.x

3 self .y 4= p.y

A return self

6| p0 = point ()
7| pl = point (0., 1.)
5| p2 = point (3, 5)

o| pl. modify_coord (2.0, 6.0)
pl.print ()

pl.print ()
o print (7 p2: (%f, %f)’ % p2.x, p2.y)
5| p3 = pl + p2
16| p3. print ()

Example: a triangle class

1| import point

2

3| class triangle:

4

5 def __init__ (self, pl, p2, p3):

6 self.vertices = [pl, p2, p3]

7

8 def print (self):

9 # Writes the points coordinates

10 print '—— Vertices of the triangle —’
11 # print ('——— Vertices of the triangle ———7)
12 for k in self.vertices:

13 k.print ()

14

15 def mod_pointcoord (self, ind, x, y):

16 self.vertices [ind].modify_coord (x,y)
17

18 def surface (self):

19 v = self.vertices

20 xl1 =v [1].x — v [0].x

21 yl =v [1].y — v [0].y

22 x2 =v [2].x — v [0].x

23 y2 =v [2].y — v [0].y

24

25 return abs (xlsxy2—x2xyl)

Example: a triangle class

p3

ke]
0, ¢

(6.25,3.25)
(2.5,3.1) p4
p3

(0,0) p2
(5,-0.25)

Example: a triangle class

import point
import triangle

); p2 = point (5,0.1)

pl point (0.0,0.
2.5,3.5); p4 = point (7.2,1.5)

0
p3 = point (5

tl = triangle (pl, p2, p3)
t2 = triangle (p2, p4, p3)

for t in [t1,t2]:
t.print ()
print ’Triangle surface: 7, t.surface ()
print (’Triangle surface: ’, t.surface

0)

Example: a triangle class

If we modify the coordinates of p2, changes affect to its
vertices

as they have the same memory direction

p2.modify_coord (4.5, —0.25)
for t in [t1,t2]:
6 t.print ()

oA W N

o

t1.mod_pointcoord (2, 2.65, 10)

| for t in [t1,t2]:
11 t.print ()

Object—oriented programming: heritage

Heritage is one of the most important features of OOP

» New classes can be created from an existing class, from which
they inherit attributes and methods, that can be adapted and/or
extended
For example:

> A car, a plane, a train and a ship are all vehicles which have
common attributes and methods (number of passengers,
maximum speed, turn off, turn on, ...); each of them can have its
particular attributes and methods (number of wheels, number of
wings, ...)
We can consider a vehicle class, and a car, plane, train and
ship subclasses

» A triangle and a rectangle are both polygons

» The new class is known as derived class, child class, heir class or
subclass

» The original class is known as base class, parent class or
superclass

Object—oriented programming: heritage

How to indicate that a class inherits from another?

class subClassName (superClassName) :

» If both are in the same file, the superclass must be defined before
the subclass

» The subclass inherits all the methods from the superclass

» If a method is simultaneously defined in both classes, the one of
the subclass is considered

» If the subclass has its own method __init__, this one must
explicitely call to the base class __init__ method

Object—oriented programming: heritage

class

def

def

def

def

polygon:
__init__(self , np=0):
self .numpoints = np
self. __color = ’red’
get_color (self):
return self.__color
set_color (self, c¢):
self. __color = ¢
surface (self):

pass

tl = triangle ()

tl.set_pts ([0,0],[1,01,[1,1])
t2 = triangle ()

t2.set_pts ([-1,01,[0,01,[-1,2])
t2.set_color (’blue’)

print ’t2 surface: ’, t2.surface
print (°t2 surface: ’, t2.surface

class triangle (polygon):
def __init__(self):
polygon. __init__(self ,3)
self.vertices = None
def set_pts(self ,pt0,ptl,pt2):
£ ((pt0[0]==pt1[0]
and pt0[0]==pt2[0])
or (ptO[l]==ptl[1]
and ptO[l]==pt2[1])):

print ' Error’
print (’ Error’)
else:

self.vertices=[pt0,ptl,pt2]
def surface (self):
[x0,y0]=self.vertices [0]
[x1,yl]=self.vertices [1]
[x2,y2]=self.vertices [2]
s = abs ((x1—x0) *(yl—y0)—
(x1—x0) *x(yl—y0)) /2.0
return s

O

o)

Object—oriented programming: heritage
We can also use a class defined in a different file:

In file polygon.py:
class polygon:

In file triangle.py:
from polygon import polygon
class triangle (polygon):

Exercise: Write the rectangle class, child of the polygon class
» Each rectangle is defined by an lower left and an upper right vertices
» Write the surface method
» Write a method that gives the four vertices of the rectangle
>

From an external code, build different triangles and rectangles and test
the implemented methods.

Object—oriented programming: further topics

» Any variable of the form self.var is public and accesible from
any method of the class, and from the program where the class
instance is used

» Writing __ before a variable or a function, we create a
pseudo-private variable or function: self.__privatevar

Object—oriented programming: further topics

» Attribute data (also called instance variables in JAVA and
member variables in C++) are the variables associated to a
specific instance of a class

» PYTHON also has class attributes, which are variables associated
to the class but not to a specific instance

» From outside the class, we access the attribute nombre of the
instace obj by writing obj.name

» Inside the class, we do self.name

» An attribute exists since the moment a value is assigned to it

Instance attributes and class attributes

1| class Point: # File: ejl_class_ptos.py

2 7?77 (Class Point 777

3

4 numPts = 0

6 def __init__ (self, x=0, y=0):

7 Point .numPts += 1 # variable of the class, shared
by all its instances

8 self .x = x # variable of the instance

9 self .y =y

10

11 def print_pt (self):

12 print ’ Point: (7, self.x,’” , 7, self.y,’)’

13 # print (> Point: (7, self.x,” , 7, self.y,”)7)

14

15| if __name_. = ’__main__":

16 ptl = Point ()

17

18 pt2 = Point (3,5)

19

20 ptol.print_-pt ()

21 print 'p2: (%f, %f)’ % pto2.x, pto2.y

22 print 'Total number of points: ’, ptol.numPts

23| # print ('p2: (%f, %f)’ % pto2.x, pto2.y)

24| # print (’Total number of points: ’, ptol.numPts)

Polymorphism

» Polymorphism is the capacity of objects and methods of a class
to react in a different way depending on the parameters or
arguments they receive

» Being a dynamical language, polymorphism is no very important
in PYTHON

Introduction to PYTHON
Variables and data types
PYTHON programming
Object—oriented programming

NuMPyY: Numerical PYTHON
NuMPY basics
The Matrix object of NUMPY
Polynomials handling in NuMPYy

SciPy: Scientific PYTHON
Bidimensional graphics with MATPLOTLIB
Pandas

Niceolanea

NuMPY

Working with loops in PYTHON is, in general, much slower than in
compiled language (FORTRAN, C, C++)

However, the NUMPY library allows vectorial operations in an
efficient way, with a speed comparable to the compiled languages

>>> from numpy import * # import all NUMPY methods
>>> import numpy as np

NuMPY allows, for example:

» addition, subtraction and matrix products, with no need of
operating with its components

» matrices inversion and solving systems of linear equations

» automatically generation of special matrices (null matrix,
identity, ...)

» eigenvalues and eigenvectors computing

NuMPY

An array can be created from a list:

>>>
>>>
>>>
>>>

a0
al
b0
bl

[0, 1.2, 4, -9.1, 5]
array (a0)

(-1, 1.1, 2, 111
array (b0)

It is also possible to create a [list from an array:
>>> x.tolist ()

Some particular arrays:

>>>
>>>
>>>
>>>
>>>
>>>
>>>

al
a2
a3
a4
ab
a6
a7

zeros (3[,dtypel)
zeros ([4,2])
ones (2[,dtypel)
ones ([3,5])

eye (3)

linspace (a,b,n)

logspace (a,b,n)

dtype = ’f’,

dtype = ’f’,

by default, n =

)d) ,

7d7 s

50

7i7

JiJ

NumMmPy

>>> u

np.array ([0., 1., 2., 3.1)

>>> v = np.array ([-2., 4., -1., 6.1)

>>> zu = np.zeros_like (u)
>>> zv = np.ones_like (v)
>>> u [u > v]

array ([0., 2.1)

>>> v [u > v]

array ([-2., -1.1)

NuMPY

We can obtain and change the dimensions of an array:

>>>
>>>
>>>
>>>

X.

X
X.
X

shape (or >>> shape (x))

.shape [0]

shape [1]

.shape = (3,2) >>> x = reshape (x,(2,3))

which is different to:
>>> x.size (or >>> size (x))

Other methods:
diag (x): returns the main diagonal of the array x
diag (v): builds a diagonal matrix with

>>>
>>>

>>>
>>>

>>>
>>>

the components of vector v

triu (x): returns the upper triangular part of x
tril (x): returns the lower triangular part of x

inverse (x)
transpose (x)

NuMPY

Access to array components:
>>> a[2,3]; al:,0]; all,:]; al0:2,1:4]

for i in range (a.shape [0]):
for j in range (a.shape [1]):
bli,jl = 3 * ali,jl - 1;

An equivalent, and more efficient, implementation is:
b = a;
multiply (b, 3, b);
subtract (b, 1, b);

or:
b=3%a-1.0;

Array product

» Array product: C=numpy.dot(A,B), where A and B are NUMPY
arrays of size m x n and n x p
>>> import numpy as np
>>> A = np.array ([[-1,0,0],[0,-3,0],[0,0,111)
>>> B = np.array ([[-1,2],[-3,0],[1,-3]11)
>>> np.dot (A,B)
array([[1, -2],
[9, 0],
[1, =31
Remark: The product Axv, being A a matrix and v a vector, it’s
independent on whether v is a row or column vector

» Inner product: numpy.inner(v,w), where v and w are
one—dimension arrays
>>> v = np.array ([1, -2, 3])
>>> y = np.array ([-2, 3, 4])
>>> np.inner (v,w)
4

Relational and logical operators

Relational operators: < , > | <= | >= | == | |I=

» when applied to arrays of the same shape, they operate element
to element and returns an array which components are True
and/or False

» when applied to an array and a scaler value, they compare each
component with the scalar, and returns an array which
components are True and/or False values

Logical operators: and , or , not

> they can be combined with the relational operators to verify
multiple conditions.

NumMmPy

Other methods:
> max, min
>>> a.max ()
>>> max (a) # only if a is similar to a single list
sum, cumsum

>
» prod, cumprod
» mean, std

>

sort
>>> a = array ([1., 2.]1,[3, 41,[5, -31)
>>> sort (a)
array ([[1., 2.1,
[3.,4.],
[-3., 5.1
rot90, flipud, fliplr

v

NuMPY

The Numpy methods sin, cos, tan, log, 1logl0, exp, sqrt, arcsin,
sinh, ** (power), ... act over each componente of an array.

It is possible to implement our own methods, where the function acts
over each component of an array. For example, if we write a file
func01.py with the following contents

def f (x):

return x **x 2

then we can do:

>>> from numpy import array

>>> import funcO1l

>>> x = array ([[-1, 01,[2, 3]11)

>>> x2 = func01.f (x)

The following result is obtained:
array([[1, 0],
(4, 911D

NumMmPy

Let’s implement the following methods:

def f03 (x): def f05 (x):
if x < 0: ind = less (x,0);
return O; r = sin (x)

r = where (ind, 0.0, 1)
return r;

else:
return sin (x);

def f04 (x):
n = size (x)
r = zeros (n,float)
for i in range (n):
if x[i] < O:
r[i] = 0.0;
else:
r[i] = sin (x[i]);
return r

NuMPY

Let’s write:

import numpy as np
from pylab import plot, show

X = np.arange
(=4*np.pi,4*np.pi,0.01)

y03 = £03 (x)
y04 = £04 (x)
yo5 = £05 (x)

p = plot (x,y04,’r-’)
show ()

The call to function £03 will return the following error:
ValueError: the truth value of an array with more than
one element is ambiguous

NuMPY

Let’s write:

import numpy as np
from pylab import plot, show

X = np.arange
(=4*np.pi,4*np.pi,0.01)

y03 = £03 (x)
y04 = £04 (x)
yo5 = £05 (x)

p = plot (x,y04,’r-’)
show ()

-0.5¢

1.0

0.5

0.0p

10 s 0 5 10

The call to function £03 will return the following error:
ValueError: the truth value of an array with more than

one element is ambiguous

15

all and any methods

If x is a one—dimensional array,

any (x)
= True, if any array element of x is nonzero
= False, if all elements of x are zero

all (x)
= True, if all elements of x are nonzero
= False, if x has at least a null element

If a is a multidimensional array:
numpy.any (a), a.any (), numpy.all (a),

a.all O

Loops vectorization using NUMPY

When possible, the loops must be vectorized:

import time

ind = (linspace (0,n-1,n))
from numpy import *

y = 3.0 - 2.%ind + ind*ind
n = input (’Introduce N: ’)

c3 = time.clock ()

cl = time.clock ()
print ’Elapsed time:’
x = zeros (n)
print ’ (a) ’, c2-cl1, ’ s’
for i in range (n):
print ’ (b) ’, c3-c2, ’ s’
x[i] = 3.0 - 2%i + ix*i

c2 = time.clock ()

The Matrix object of NUMPY

» NUMPY provides a special object to handle matrices
(bidimensional arrays): matrix. It is a subclass of the array
class. This object is used to make linear algebra operations

» The object array has a general purpose to handle
multidimensional arrays. However, the object matrix simplifies
algebraic operations

>>>
>>>

>>>
>>>
>>>
>>>

from numpy import *
A = matrix (°1 3 4; 56 9; 0, 1, 2°)
or: A =mat (°1 3 4; 56 9;

0, 1, 27)
matrix (°-1 0 0; 0 -3 0; 0, 0, -47)
B # matrix multiplication

transpose

inverse matrix

== = W
H = %

The Matrix object of NUMPY

> numpy.asarray (a, dtype=None, order=None): returns a as an array.

>>> from numpy import *
>>> m = matrix (’1 2; 5 8?)
>>> a = asarray (m) # a is a copy of m by reference

>>> a

array([[1, 2],

[5, 811

>>> m[0,0] = -99

>>>m

matrix ([[-99, 2],

[5, 81D

>>> a # if a changes, also m changes, and viceversa
array ([[-99, 2],

[5, 81D

>>> del a # althoug a is deleted, m not
>>>m

matrix ([[-99, 2],

[5, 81D

> numpy.asmatrix (data, dtype=None): transforms data in an object
matrix

Polynomials handling in NUMPY

» Numpy provides several methods to work with polynomials
» In particular, the class polyld creates a polynomial-type object
» This class allows to build a polynimial using:
> a list that specifies the coeffients, or
> a list that contains the roots of the polynomial
» It is possible to work with polynomial objects in algebraic
expressions. A polynomial can be derivated, integrated and
evaluated. The polynomial objects can be added, subtracted,
multiplied and divided.

Polynomials handling in NUMPY

1|>>> import numpy as np

2 # polynomial created from its coefficients
3|>>> p = np.polyld ([3, 2, 0, 1])

4|>>> print (p)

5 3 2

603 x +2x+ 1

7

§|>>> p.r # roots of the polynomial

o| array ([—1.0000000040. , 0.16666667+0.5527708] ,

10 0.16666667—0.5527708j])

11

12|>>> p(0.5) # it evaluates the polynomial in 0.5.
13 # Analogous to np.polyval(p,0.5)

141 1.875

15[>>> p([2,—-1,-10]) # evaluates the polynomial in 2,—1,10
16| array ([33, 0, —2799)])

18| >>> print (p.deriv (m=2)) # prints second derivative of p
19018 x 4+ 4

21|>>> print (p.integ ()) # prints the primitive of p
22 4 3
231 0.75 x + 0.6667 x + 1 x

Polynomials handling in NUMPY

>>> ¢ = np.poly ([2,—2]) # returns coefficients of the
polynomial which roots are 2 and —2

1
2
3

4|>>> q = np.polyld (c¢)

5|>>> print p + q # sum of polynomials;

6 # equal to np.polyadd (p,q)
7 3 2

503 x +3 x — 3

10| >>> print px*xq # product of polynomials

11 5 4 3 2

23 x +2x— 12 x — 7 x — 4

13

wu|>>q / p # polynomial division;

15 # equal to np.polydiv (q,p)

16| (polyld ([0.]), polyld ([1, 0, —4]))

Introduction to PYTHON
Variables and data types
PYTHON programming
Object—oriented programming
NuMPY: Numerical PYTHON

SciPy: Scientific PYTHON
Linear algebra
Interpolation
Numerical integration
Optimization
Some financial functions

Bidimensional graphics with MATPLOTLIB

Pandas

SciPy

What is SciPy?

| 2

>

>

It is a PYTHON module for scientific computation
PyTHON-type licence

Developed by ENTHOUGHT; its (main) authors are Eric Jones,
Travis Oliphant, Pearu Peterson and Prabhu Ramachandran
NumPy-based core

It provides many routines for statistics, optimization, signal and
image processing, ...

It is not included in the basic PYTHON distribution, so it must be
expressely installed

SciPy modules

ScIPyY includes several modules under the scipy namespace

» Tools:

YVVY VY VY Y VY VvYVY VvV VvVyYy

cluster: vector quantization / kmeans
fftpack: Fourier transformed

integrate: numerical quadrature
interpolate: interpolation and ODE solvers
linalg: linear algebra routines

misc: several utilities (including the Python Imaging Library)
ndimage: n-dimensional images tools
optimize: optimizatin and root finding tools
signal: signal processing tools

sparse: sparse matrices

stats: statistical functions

» Other packages:

>

io: data input/output

> 1lib: wrappers for external libraries (BLAS, LAPACK)
> special: mathematical functions definiciones de muchas

funciones usuales de mateméticas
weave: C/C++ interaction

SCIPY linalg module

It is a linear algebra module. It is also available from numpy, but in a
reduced version

from numpy import array

import scipy

from scipy import linalg

A = array ([[1,0,0,0],[0,-1,-1,0],[0,0,-1.,0],[0,0,0.,2]11)
b = array ([2,3,4,0])

linalg.det (A): A determinant

linalg.inv (A): computes the inverse of A

linalg.solve (A,b): solves the Ax = b system

linal.eig (A): computes eigenvalues and eigenvectors of A

linal.eigvals (A): computes eigenvalues of A

SCIPY 1linalg module

import numpy
from numpy import array
import scipy
from scipy import linalg

A
b

array ([[1,0,0,01,[0,-1,-1,0],([0,0,-1.,01,[0,0,0.,211)
array ([2,3,4,0])

detA = linalg.det (A)

iA = linalg.inv (A)

¢ = linalg.solve (A,b)
[eigvals,eigvecs] = linalg.eig (A)
aval = linalg.eigvals (A)

aval2 = numpy.linalg.eigvals (A)

SCIPY linalg module: linear systems
LU factorization:

Given a matrix A such that det (Ay) # 0 (k = 1,2, ...), there exist
a lower triangular matrix L and an upper triangular U such that:
A=LU

A = array ([[60,30,20],[30,20,15],[20,15,12]])

linalg.lu (A, [permute_1=0, overwrite_a=0])
If permute_1=0, p,1l,u=linalg.lu(A) = a = pxl*x u
If permute_1=1, m,u=linalg.lu(A,permute_1=1) = a = m*u

Cholesky (LLT) factorization:
Given a symmetric and defined positive matrix A, there exists a
lower (upper) triangular matrix L (U) such that A = LLT
(A=UTU)
M = array ([[0.9, 0.06, -0.39, -0.24], \
[0.06, 1.604, 0.134, 0.464], \
[-0.39, 0.134, 2.685, 0.802], \
[-0.24,0.464, 0.802, 1.97711)
linalg.cholesky (M)

SCIPY linalg module: linear systems

QR factorization:

Given an inversible matrix A, there exist an orthogonal matrix Q)
and an upper triangular matrix R such that:

A=QR

A= array ([[1y_2’1]:[_1s3:2]s[1’_13_4]])
linalg.qr (A)

SCIPY interpolate module

scipy.interpolate package provides two general kinds of
interpolation tools:
» Linear unidimensional interpolation

» 1-D and 2-D cubic splines (based in FITPACK library, written in
Fortran)

SCIPY interpolate module: 1-D interpolation

Assume we want to represent the function f(z) = e™® + 23 in the
interval [0, 1], but we only know the value of f in seven points:

from scipy import interpolate as inter
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace (0., 1., 7)
y = np.exp (—x) + x**3 1

f = inter.interpld (x, y)

xa = np.linspace (0,1,30) &
ya = f(xa) v
evaluates f in
every point of xa

for i in range (0, xa.size):
print xa[i], * \t’, ya[i]

= W=

~ W W N W

iR W V=

SCIPY interpolate module

from scipy import interpolate as inter

import numpy as np

import pylab

x = np.linspace (0.,1., 7)

y = np.exp(—x) + x*x%3

s1_f = inter.splrep (x,y,k=1) 15
linear spline

s3_f = inter.splrep (x,y)
cubic spline

XS

5|# Evaluation of the

y-sl = inter.splev
)|# der: derivative order
y-s3 = inter.splev

np.linspace (0,1,30)

(xs,sl_f,der=0)

(xs,s3_f,der=0)

spline in xs points

@ @valores
== lineal
—— cubico

SCIPY interpolate module

It is also possible to evaluate the derivative and the integral of a spline

First derivative (der = 1)
dys = inter.splev (xs,sc_f,der=1)

Exact derivative value
deys = —np.exp(—xs)+3.0xxs*%2
print ’'Error Derivada: 7,

max(np.abs(deys—dys))

Integral
iys = np.zeros_like (xs)
for i in range (0,xs.size):
iys[i] = inter.splint (0.0,xs[i],sc-f)
iys 4= —1

ieys = —np.exp(—xs) + 1.0/4.0%xs*%4
print ’Integral error: 7,
max (np.abs(iys—ieys))

— derivada aprox

- - derivada exacta

-+ integral aprox
< integral exacta

SCIPY integrate module

The scipy.integrate module allows:

» numerically approximate the integral of a function in a (not
necessarily finite) interval
> quadrature (f, a, b, args=(), tol=1.5e-8, maxiter=50):
integrates function f between a and b by a quadrature formula
with tolerance tol.
» quad (f, a, b, ...): idem, using QUADPACK library
» romberg (f, a, b, tol=1.48e-8, show=0, divmax=10):
Romberg integration
> dblquad (f, a, b, gfun, hfun, args=(), epsabs=1.5e-8,
epsrel=1.5e-8): 2-D integral
> tplquad (f, a, b, gfun, hfun, gfun, rfun, args=Q),
epsabs=1.5e-8, epsrel=1.5e-8): 3-D integral
» numerically approximate the solution of systems of ODEs

» odeint

SCIPY integrate module

Example:

2m
/ cos? (x)dx
0

>>>
>>>
>>>

>>>

7| >>>

from scipy import integrate
import math
def f(x):

return math. cos (x)**2

val ,error = integrate.quad (f,0.0,2.0+math.pi)
val, error
(3.1415926535897931, 2.3058791641795214e¢—09)

SCIPY integrate module

16

>>> from scipy import integrate
>>> import scipy

3|>>> import math

>>> def f(x):

return math.sqrt (x+1)
>>> def f2(x):
return 1.0/ (x*%2+41)

>>> for function in [f,f2]:
val ,error=integrate.quad(function ,0.0,scipy.Inf)

print ’Integral ’,funcion.__name__,’: value= ’,6val, \
error= ’,error

Warning: The integral is probably divergent, or slowly
convergent

Integral f: value= —0.666666666676 error= 3.01820790582e—11
Integral f2: value= 1.57079632679 error= 2.5777919189e—10

SCIPY integrate module

» Numerical solution of a first order ODE system:

o _ -
= f(F.t
i)
» Pendulus equation (second order):

20 _ 9.,
a ~ "

It is equivalent to a first order system:

S

SCIPY integrate module

import scipy, scipy.integrate, pylab
def dydt (y,t,g,L):

theta, v =y

return [v, —(g/L)*scipy.sin(theta)]
g = 9.8
L=1.0

times = scipy.arange (0.,10., 0.1)
y0 = [scipy.pi/4.0,0.] # initial cond

y_trajectory = scipy.integrate.odeint \
(dydt,y0,times, args=(g,L))
#args: optional arguments

i| pylab.plot (times, y_trajectory[:,0])

pylab.plot (y-trajectory[:,0], \
y-trajectory [:,1])
pylab.show ()

SCIPY optimize package

The scipy.optimize package provides different functionalities:
» Optimization methods:
> Nelder—-Mead simplex algorithm: fmin
BFGS algorithm: fmin bfgs
Newton / Conjugate Gradient methods: fmin ncg
Least squares: leastsq
Constrained least squares: fmin_slsqgp

vvy vy

» Minimizing a scalar function: brent, fminbound

» Search for non linear equations roots: fsolve

SCIPY: roots of nonlinear equations

» Roots of a polynomial equation: roots

Example: 22 —-52x+6=0

>>> import scipy
>>> scipy.roots([1, —5, 6])
array ([3., 2.])

[

Example: —z%+4+222 -8z —-1=0

>>> import scipy

2|>>> scipy.roots([—1,2,—-8,—1])

sl array ([1.06055549+2.67060141j, 1.06055549—2.67060141j,
—0.12111098+0.j])

SCIPY: roots of nonlinear equations

» Roots of a general nonlinear equation: fsolve.
It is a wrapper to MINPACK hybrd and hybrj algorithms.

Example: x4+ 2cos(z) =0

1|>>> from math import cos

>>> def func (x):

return x 4+ 2%cos(x)

>>> from scipy.optimize import fsolve
5|>>> x0 = fsolve (func,0.3)

6| >>> print x0

7| —1.02986652932

w N

Example: xo cos(z1) =4; zor1 — 21 =5

1|>>> from math import cos

2[>>> def func (x):

3| .. return [x[0]*xcos(x[1]) —4.0, x[0]*x[1]—x[1] —5.0]
1|>>> from scipy.optimize import fsolve

5|>>> r = fsolve (func, [1., 1.])

6| >>> print r

7| array ([6.50409711, 0.90841421])

SCIPY: least squares

Goal: given the couples (z;,y;), we search the function that best fits
the data according the least square error

For example, we search the parameters A, k and 6 in order to have
the best approximation to: y = Asin(2wkx + 0)

from numpy import
x = arange(0,6e-2,6e-2/30)

A,k,theta = 10, 1.0/3e-2, pi/6
Least-squares fit to noisy data

y_true = A*sin(2*pixk*x+theta)
y_meas = y_true + 2*random.randn(len(x)) — Fit

. . o o Noisy
def residuals(p, y, x): ‘

A,k,theta = p
err =y - A * sin (2xpixk*x+theta)
return err
def peval(x, p):
return p[0] * sin (2xpixp[1l*x+p[2])
po = [8, 1/2.3e-2, pi/3]
print array (p0)

from scipy.optimize import leastsq
plsq = leastsq (residuals, p0, args=(y_meas, x))
print plsq[0]

print array ([A, k, thetal)

o
~ oo 0.01 0.02 0.03 0.04 0.05 0.06
import matplotlib.pyplot as plt
plt.plot (x,peval(x,plsql0]),x,y_meas,’o’,x,y_true)
plt.title (’Least-squares fit to noisy data’)
plt.legend ([’Fit’, ’Noisy’, ’True’])
plt.show ()

NuUMPY financial functions

vV vV vV vV VvV VvV VvV VvV VY

fv: future value

pv: present value

npv: net present value

pmt: payment against loan principal plus interest
ppmt: payment against loan principal

ipmt: interest portion of a payment

irr: internal rate of return

mirr: modified internal rate of return

nper: number of periodic payments

rate: rate of interest per period

Introduction to PYTHON
Variables and data types
PYTHON programming
Object—oriented programming
NuMPY: Numerical PYTHON
SciPy: Scientific PYTHON

Bidimensional graphics with MATPLOTLIB
The plot command
Graphics and axes control
The subplot and axes commands
Other 2D graphics commands
Animations

Pandas

The plot command

from pylab import *

plot (x,y,properties)

» x and y are real arrays of the same dimension
> plot (x,y): plots x in abscissa axis and y in the vertical axis

Property [Abbrev. [Description
alpha - Float value in (0, 1),
from transparent to opaque
antialiased aa True or False; uses antialiasing rendering
color c Matplotlib color
label - Optional string used in the legend
linestyle 1s Line style
linewidth 1w Float, linewidth
marker - A valid marker style
markeredgewidth mew Linewidth around the marker
markeredgecolor mec Marker border color
markerfacecolor mfc Marker color
markersize ms Markersize

The plot command

Example:
X = numpy.arange (-10,10.5,0.5)
y = X ¥k 2
» By default plotting: solid blue line without markers
plot (x,y)
» Specifying properties:
plot (x,y, c=’r’, 1s=’--’, marker=’s’, ms=4, mfc=’g’)

plot (x,y, ’r--s’, ms=4, mfc=’g’)
plots a dashed red line, with square green markers and black
border

» Showing the plot in a GTK
window:
show ()

The plot command

Example:
X = numpy.arange (-10,10.5,0.5)
y = X ¥k 2

» By default plotting: solid blue line without markers
plot (x,y)

» Specifying properties:
plot (x,y, c=’r’, 1s=’--’, marker=’s’, ms=4, mfc=’g’)
plot (x,y, ’r--s’, ms=4, mfc=’g’)
plots a dashed red line, with square green markers and black
border

» Showing the plot in a GTK ‘\.\
window: . '\ i
show () ’

BlolO+||8la]

The plot command

l Symbol ‘ Color H Symbol Description
y yellow . points
m magenta 0 circles
c cyan X X marker
r red + + marker
g green S square marker
b blue d diamond marker
W white - triangle up marker
k black v triangle down marker
0.75 grayscale [0, 1] > triangle right marker
#636£b0 RGB (hexadecimal) < triangle left marker

(0.9,0.111,1)

RGB (tuple)

P

pentagon marker

h

star marker

Symbol

Line style

continuous line

dotted line

All symbols are given as string,

dash-dot line

except the RGB tuple

dashed line

Graphics control

» hold (value), value=True/False: Sets the ‘hold’ state. If
True, subsequent plot commands will be added to the current
axes. If False, the current axes and figure will be cleared on the
next plot command. Default value is True

» grid (value), value=True/False: Turns the axes grids on or
off. Default value is False

» box (value), value=True/False: Turns the axes box on or off.
Default value is False

» title (’string’): Sets a title of the current axes

» xlabel (’string’): Sets the X axis label of the current axis; it
can be eliminated by writing xlabel off

» ylabel (’string’): Sets the Y axis label of the current axis

Graphics control

> text (x,y,s (,parameters)): adds text in string s to axis at

location (z,y), data coordinates. The value of the parameters are:

horizontalalignment = ’left’/’right’/’center’
verticalalignment = ’top’/’bottom’/’center’
rotation = grades

multialignment = ’left’/’right’/’center’

> legend (plots-1list, labels-list, loc=value,

shadow=False/True): Places a legend on the axes. To make a
legend for lines which already exist on the axes (via plot for
instance), simply call this function with an iterable of strings, one
for each legend item.
loc specifies the location of the legend.
loc = ’best’,’center’,’upper’,’right’,’left’,’lower’,

’upper right’,’center right’,’lower right’

If 1oc is not especified, the legend is placed in the best possible
place

Graphics control

> idf =

figure (num): Creates a new figure. If num is not provided, a new
figure will be created, and the figure number will be incremented. The figure
objects holds this number in a number attribute. If num is provided, and a
figure with this id already exists, makes it active, and returns a reference to
it. If this figure does not exists, creates it and returns it. If num is a string,

the window title will be set to this figures num.

» Functions associated to figure, that can be used from the ipython console:

> close (idfig) or close (num): closes the figure asociated to the

reference idf or the number num
> clf(): clears the active figure

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

from pylab import *
f1 = figure (1)

x = arange (-10,10,0.5)

y = x*%2

z = sqrt(abs(x))

plot (x,y) # Plot in f1
f2 = figure(2)

plot (x,y,’g:’) # Plot in £2
figure (1)

plot (x,10%z) # Plot in f1

close (f1)

Axis control

v = axis ([xmin, xmax, ymin, ymax]): Convenience method
to get or set axis properties. Sets the maximum and minimum

values on each axis. Returns v as the list [xmin, xmax, ymin,
ymax]

axis(’equal’): changes limits of x or y axis so that equal
increments of x and y have the same length

axis(’scaled’): achieves the same result by changing the
dimensions of the plot box instead of the axis data limits

axis(’image’): is ’scaled’ with the axis limits equal to the
data limits

axis(Poff’): turns off the axis lines and labels

axis(’on’): turns on the axis lines and labels

Example ex1 plot2d.py

from pylab import *

x = arange (-5,5+0.5,0.5)

y = - xxx + 25

plot (x,y,’r-’, marker=’.’, label="Y Curve’)
grid (True)

z = -0.8*x*xx+20

plot (x,z,’g:’, marker=’+’, label=’Z Curve’)

u = -0.6%x*xx+15

plot (x,u,’b--’, marker=’d’, label=’U Curve’)
v = - 0.4*xx*xx + 10

plot (x,v,’m-’, marker=’"’, label=’V Curve’)

w=- 0.2%x*x + 5

plot (x,w,’c-.’, marker=’p’, label=’W Curve’)

axis ([-8 ,8 ,0 ,301)

legend (loc=’best’)

text (-6, 21, ’Curves set’)

xlabel (’Abscissa’); ylabel (’Ordinate’); title (’Paraboles’)
savefig (’simpleplot.png’)

show ()

Example ex1 plot2d.py

Figure T

i Cufva'¥
iﬂi"‘ Curva Z
#4e Cutva U

ml °| °|+| ﬁl El. | 4=2.252919058, y=8.1 402439024

The subplot and axes commands
They both add axes to the figure

» subplot (numRows,numCols,plotnum): Returns a subplot axes
positioned by the given grid definition. Where numRows and
numCols are used to notionally split the figure into numRows x
numCols sub-axes, and plotnum (starts at 1) is used to identify
the particular subplot.

> If numRows, numCols and plotnum are all less than 10, commas are
not necessary: subplot(numRowsnumColsplotnum)

figure (1)
arange (-10,10,0.5)

M Hh
1]

subplot (211)
subplot (2,1,1)
plot(x,sqrt(abs(x)),’r--?)

subplot (212)
plot (x,x*x3,’g:d’)
show ()

The subplot and axes commands
They both add axes to the figure

» subplot (numRows,numCols,plotnum): Returns a subplot axes
positioned by the given grid definition. Where numRows and
numCols are used to notionally split the figure into numRows x
numCols sub-axes, and plotnum (starts at 1) is used to identify
the particular subplot.

> If numRows, numCols and plotnum are all less than 10, commas are
not necessary: subplot(numRowsnumColsplotnum)

f = figure (1) B -ox
x = arange (-10,10,0.5) 5
subplot (211) P

subplot (2,1,1) I "
plot(x,sqrt(abs(x)),’r--?) 02ig = & 5 o
subplot (212) *
plot (x,x**3,’g:d’)] RECCLAAAAA
show () .~

PR

The subplot and axes commands

> axes(rect,axisbg=’color’): Adds an axis to the figure. The
axis is added at position rect specified by:
> rect=[left,bottom,width,height] and measured in normalized
units (0, 1) respect to figure
> axisbg is the background color, that it is white by default

f = figure (2)
x = arange (-10,10.5,0.5)

Main figure
pl = plot (x, sqrt(abs(x)),’r--’)
title (’Ejemplo axes’)

al = axes ([.4, .65, .25, .21,
axisbg=’y’)

plot (x,x**3,%g:d’)

title (Px*%*3’)

a2 = axes ([.2, .15, .2, .2],
axisbg=’g’, xticks=[], yticks=[])

plot (x,(x*%4)/100.,’r-.0’)

title (’(x*x4)/100.%)

axis ([-11,11,-10,110]); show ()

The subplot and axes commands

> axes(rect,axisbg=’color’): Adds an axis to the figure. The

axis is added at position rect specified by:
>

units (0, 1) respect to figure

axisbg is the background color, that it is

figure (2)
arange (-10,10.5,0.5)

Main figure
pl = plot (x, sqrt(abs(x)),’r--’)
title (’Ejemplo axes’)

al = axes ([.4, .65, .25, .21,
axisbg=’y’)

plot (x,x**3,%g:d’)

title (Px*%*3’)

a2 = axes ([.2, .15, .2, .2],
axisbg=’g’, xticks=[], yticks=[])

plot (x,(x*%4)/100.,’r-.0’)
title (° (x**4)/100.7%)

axis ([-11,11,-10,110]); show ()

rect=[left,bottom,width,height] and measured in normalized

white by default

Ejemplo axes

500

e

(x++4)/100.

T 5 g g o

EEEEEED]

Other

vV v v v

commands

fill (x,y,c): Plots filled polygons which vertices are the
components {z,y}, and it’s filled by the color ¢ (the color can be
specified by a string or in hexadecimal format ’#aaff01’)

bar: makes a bar plot
barh: makes a horizontal bar plot
pie: plots a pie chart

errorbar: plots an errorbar graph

savefig (’namefile’,dpi=150): saves the figure in the file
namefile
> If the extension is not specified, it saves the figure in .png. It is
possible to save the figure in .eps, .svg
> dpi: the resolution in dots per inch

draw (): redraws the current figure

Example: ex4 plot2d.py
from pylab import*

subplot (2,2,1)

x1 = arange (-4*(pi/2.),8%(pi/2.),0.05)
y2 = sin (x1)

£ill (x1,y2,’#01aa99’)

subplot (2,2,2)

x=[1,2, 4, 5,9, 10]

y = [20 ,12, 25, 40, 19, 32]

bar (x,y)

subplot (2,2,3)

fracs = [20,12,25, 40,19,32]

pie (y,autopct=’%1.1£%%’, shadow=True.
subplot (2,2,4)

e = [0.5, 0.3 ,0.8, 1.0, 1.5, 2.0]
errorbar (x,y,e)

savefig (’grafs.eps’)
show ()

-0.5

1.0y

0.5

0.0

123 456 7 8 9 1C

The setp and getp commands

> setp(obj,property): Sets a property on an artist object.
>>> linel = plot (x,y)
>>> setp (linel, linestyle = ’--’, color = ’r’)
setp(obj): allows to see all the properties, of the object obj,
that can be set, and their possible values.

>>> setp (1linel)

obj.set_someproperty(value): Sets the value of the property
named someproperty:
>>> f1 = figure(l)
>>> f1.set_figwidth(5)
> getp(obj): gets object properties of (obj)
>>> 11 = plot (x,y)
>>> getp (11)
obj.get_someproperty(): returns the value of the property
called someproperty:
>>> 11 = plot (x,y)
>>> 11[0] .get_xdata()

Animations

To visualized graphic animations with matplotlib, we can use:
» ion(): turns interactive mode on
» the class matplotlib.animation
» an asociated GUI

Using ion(): If the size of the used arrays is the same along all
animation, we can use obj.set_xdata (objarray) and
obj.set_ydata (objarray)

from pylab import * for n in range (0,10):
import time y = ((-1)*#*n)*cos(x+n/10.)

if first ==
ion () line=plot(x,y,’b--’, marker=’4d’)
step = 0.1 first =1
first = 0 else:
x = arange(0, 2*pi+step, time.sleep (0.1)
step) line[0] .set_ydata (y)

draw() # Redraw

When the graphics animation finishs, the windows is automatically closed

Animations

Another posibility is to redraw the graphic at each time:
from pylab import *

ion ()
f1 = figure (figsize=(10,10))
ax = subplot (111)
arange (-3., 3.+0.2, 0.2)
y = arange (-3., 3.+0.2, 0.2)
[X,Y] = meshgrid (x,y)
for n in range (1,20):
Z = sin(X) * cos(Y/(15.*n)) * cos(n*X*Y)
cla O
contour (X,Y,Z)
draw () # Redraw

X

Animations

Using the class matplotlib.animation
Examples: http://matplotlib.org/examples/animation/index.html

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

First set up the figure, the axis, and the plot element we want to animate
fig = plt.figure()
ax = plt.axes(xlim=(0, 2), ylim=(-2, 2))
x = np.arange(0, 2*np.pi, 0.01)
line, = ax.plot(x, np.sin(x))
animation function. This is called sequentially
def animate(i):
line.set_ydata(np.sin(x + i/10.0)) # update the data
return line,

Init only required for blitting to give a clean slate.
def init():

line.set_ydata(np.ma.array(x, mask=True))

return line,

call the animator. blit=True means only re-draw the parts that have changed.

ani = animation.FuncAnimation(fig, animate, np.arange(l, 200), init_func=init,
interval=55, blit=True)

plt.show()

http://matplotlib.org/examples/animation/index.html

Animations

» init() is the function which will be called to create the base
frame upon which the animation takes place.
It is important that this function return the line object, because
this tells the animator which objects on the plot to update after
each frame

» animate (i) is the animation function. It takes a single
parameter, the frame number i.
It returns a tuple of the plot objects which have been modified.
This tells the animation framework what parts of the plot should
be animated

Exercise

Consider t € [0, 27] and the functions x and y given by:

x(t) = sin(5t) y(t) = cos(t).

Write a code that implements the following:

1.

2.
3.
4

Plot functions x and y
Plot function y(z) (parametric equations)
Write a title introduced by the user

A natural number n given, plot (with four line styles) the curves
containing the pairs {x, y}, with:

x(t) = sin(it) i=1,2,...,n

Exercise ex2_plot2d.py

from pylab import*
import time

t = arange(0,2*pi,0.05)

x = sin (5%t)

y = cos (t)

stx=subplot (2,2,1)

plot (t,x,’r-d’,mfc=’y’)
subplot (2,2,2)

plot (t,y,’b:’,lu=4)
sxy=subplot (2,2,3)

plot (x,y,’m--s’,mfc=’r’)

tit=raw_input (’Titulo de la
grafica sin(5*t)="’)
stx.set_title(tit)

n = input (’Dame N (> 1): ?)
print type(n)

subplot (2,2,4)
tl=[’r-’,’g--’,’m:’,’b-.o’]

m=len(tl) #m=4 for this example

for i in range(1l,n+1):
x = sin (i*t)
resto=1im
if (resto==0):
£1=t1[m-1]
else:
fl=tl[resto-1]
plot (x,y,fl)
time.sleep(0.3)
show()

Ejercicio ej2_plot2d.py

sen(5t)

Pandas

Python tool for data manipulation and analysis (data science).
It stands for PANel DAta.

Open-source — Free/Gratis/Gratis/Frei/Fri.

It is built on top of Numpy.

Highly optimized: expensive parts in Cython.

Very well documented.

Widely used for financial applications.

vV V. vV vV vV v Vv .Yy

Webpage: http://pandas.pydata.org/

http://pandas.pydata.org/

Pandas - Some features

vV v . v v

Easy handling of missing data (represented as NaN).
Size mutability: columns can be inserted and deleted.
Automatic and explicit data alignment.

Make it easy to convert Python and NumPy data structures into
Pandas objects.

» Intuitive merging and joining data sets.

» Flexible reshaping and pivoting of data sets.

Hierarchical labeling of axes (possible to have multiple labels per
tick).

IO tools for loading data from flat files (CSV and delimited),
Excel files, databases, etc.

Time series-specific functionality.

Pandas - Resources

» Documentation: http://pandas.pydata.org/pandas-docs/stable/
» Many sources of information:

» Tutorials.
» Video tutorials.
» Online courses.

» Book: Python for Data Analysis: Data Wrangling with Pandas,
NumPy, and IPython by Wes McKinney.

http://pandas.pydata.org/pandas-docs/stable/

Pandas

v

Data structures.

» Series.
> DataFrame.

Visualization.

v

v

Time series.

Data reader.

v

Pandas - Data structures - Series

v

One-dimensional indexed (labelled) structure.

» Series(data, index):

vV v v v Y

> data can be a list, dictionary, numpy narray, etc.
> index is a list of labels (optional, by default 0,1,...).

As narray, Series can be viewed, accessed, sliced, compared (>,
==, etc), etc.

Series handling: max, min, sort, etc.

Statistics: mean, std, etc.

Interoperability with NumPy element-wise math operations.
Also the dictionary function: in, get, etc.

Main difference: Series automatically align the data based on the
label.

» Naming the series.

» Example: /Pandas_examples/1-Series.py

Pandas - Data structures - DataFrame

v

v

v

v

2-dimensional indexed (labelled) data structure.
Like a Excel or SQL table.
DataFrame(data, index, columns):

>

vV Yy VvYVvVYy

data can be a dictionary of lists, dictionaries, narrays or Series.
data can be a list of dictionaries.

data can be a 2D narray.

data can be a Series object.

index is a list of labels for rows (optional).

columns is a list of labels for columns (optional).

The column of a DataFrame object is a Series object.

Pandas - Data structures - DataFrame

» Data alignment is intrinsic: the link between labels and data can
not be broken unless done so explicitly.

» Many operations for accessing, addition, selection, alignment, etc.
» Interoperability with NumPy element-wise math operations.

» Operations between DataFrame and Series: by default, the Series
index is aligned on the DataFrame columns (broadcasting
row-wise).

» Higher dimensions: Panel (deprecated).

» Example: /Pandas_examples/2-DataFrame.py

Pandas - Data structures

> Viewing:
> head(n)/tail(n): returns the n first/last elements.
> index/columns: returns the index/column of the structure.
> describe(): returns statistical measures (mean, std, quantiles,
etc.).
> Getting/Setting:
[’C’J: returns the column called "C".
[n:mJ: returns all the columns between n and m (slicing).
loc[’r’]: returns the row called ’r’. Slicing (:) also available.
at[’r’, ’C’|: returns the value at row r’and ’C".
tlocfi]: same as loc[’r’] but using position ¢. Slicing (:) also
available.
> iz/’i’]: works with indexes or positions.

v

vvyY vy

» Operations:
> mean(), std(), cumsum(), T, etc.
> apply(f): applies f.
» Others:
» Merging: concat, join, append, etc.
» Grouping: groupby.
» Reshaping: stack/unstack, pivot_table

Pandas - Visualization

» Pandas provides advanced visualization tools.

» Based on Matplotlib, easier to use.

» Several methods: line (line plot), bar (bars), hist (histograms),
boz (boxplots), kde (density), area (areas), scatter (scatter plots),
hexbin (hexagonal bins) and pie (pie plots).

» The returning value is a Matplotlib Axes object.

» Highly customizable (color, legends, size, orientation, scales, etc).

» Other functions for special plots like Andrews curves, scatter
matrix, density plot, autocorrelation plot, bootstrap plot, etc.

> Matplotlib can be also used (pandas structures act as Numpy
arrays).

» Example: /Pandas_examples/3-Visualization.py

Pandas - Time series

» Pandas is suitable tool for time series data (financial data).

» Functionalities to:

vV v v v Y

» generate sequences of fixed-frequency dates.

> convert time series to a particular frequency.

» compute “relative” dates based on various non-standard time
increments.

Based on the datetime64 type of NumPy.

Nanosecond precision.

Main components: Timestamp and Period.

List of Timestamp/ Period: DatetimeIndex and PeriodIndez.

Conversion from list-like structures, strings, integers, etc. into
Datetimelndex: to_datetime(list).

Used as indexes in Series and DataFrame objects.

Pandas - Time series (cont.)

» Generating ranges: date_range(start, periods, freq) and
bdate_range(start, periods, freq).

» Functionalities:

» Optimized accessing, slicing, alignment manipulations.
» Partial indexing: ’year’, 'month’; etc.
» Truncation.

» Conversions between Timestamp and Period: to_period and
to_timestamp.

» Many other functionalities: resampling, time zone handling,
DateOffsets (implicit and explicit), etc.

» Click to documentation (DateOffsets).

» Example: /Pandas_examples/4-TimeSeries.py

http://pandas.pydata.org/pandas-docs/version/0.18.1/timeseries.html

Pandas - Data reader

» Functions to extract (financial) data from Internet sources.
» It returns a DataFrame object.

» The downloaded data is cached: the subsequent accesses will be
faster.

» Currently supported sources (among others): TEX, Quandl,
St.Louis FED (FRED), OECD, Eurostat, MOEX, World Bank.

» Useful function: DataReader(name, source, start, end).

» Experimental. Options data from Yahoo! Finance,
Options(name).

» Specific requests to avoid the download of all the data:
get_call_data, expirity_dates, etc.

> A lot of information from the World Bank (wb package): search,
download, country codes, etc.

» Example: /Pandas_examples/5-DataReader.py

Introduction to PYTHON

Variables and data types

PYTHON programming

Object—oriented programming

NuMPY: Numerical PYTHON

SciPy: Scientific PYTHON

Bidimensional graphics with MATPLOTLIB
Pandas

Miscelanea
Sparse matrices
EXCEL files read/write

F_mail cendino

Sparse matrices

There are (at least!) two libraries that allow working with sparse
matrices:

> scipy.sparse

> pysparse

ScIPY: an example with the

from scipy import sparse

from scipy.sparse.linalg import dsolve as ds

import numpy

sparse

library

n=>5
a = sparse.lil matrix ((n, n)) # list of lists
for i in range (n-1):

ali,i] = 4.0

ali,i+1] = -1.0
ali+1,i] = -1.0
a[n-1,n-1] = 4.0

x = numpy.array ([1., 2., 3., 4., 5.1)
b =a* x
y = ds.spsolve (a,b) # resolution

aa = a.tocsr () # we convert to CSR
bb = aa.matvec (x)
z = ds.spsolve (aa,bb)

Examples with pysparse library (I)

import numpy
from pysparse import *
n =5; a = spmatrix.llmat (n,n)
Symmetric matrix, although we don’t profit it
for i in range (n):
ali,i] = i+1.0
al0,0] = 3.0; al0,3] = -1.0; a[3,0] = -1.0
al2,4] = 2.0; al4,2] 2.0
s = numpy.array ([1.0, 2.0, 3.0, 4.0, 5.0]) # Solution
b = numpy.zeros (n)
a.matvec (s,b) # b: second member
X = numpy.zeros (n)

iter = 500; eps = 0.00001
[par,nit,err] = itsolvers.pcg (a,b,x,eps,iter) # P.C.G.

if (par < 0):

print ’ The CG algorithm has not converged’
else:

print > CG converges in %d iter.’ % (nit)

print ’ Achieved relative error: %12.8e’ % (err)

Examples with pysparse library (II)

n=>5
m = spmatrix.llmat (n,n)
for i in range (n):
mli,i] = i+1.0
m[0,0] = 3.0; m[0,3] = 1.0; m[3,0] = -1.0
m[2,4] = 2.0; m[4,3] = 2.0 # Non symmetric matrix

¢ = numpy.zeros (n)

m.matvec (s,c) # c: second member
x2 = numpy.zeros (n)
iter = 500

eps = 0.00001

[par,nit,err] = itsolvers.cgs (m,c,x2,eps,iter)

if (par < 0):
print ’ CGS algorithm has not converged’

else:
print > CGS converges in J%d iterations’ 7% (nit)
print ’ Achieved relative error: ¥%12.8e’ % (err)

Examples with pysparse library (III)

a2 = a.tocsr () # CSR form is required
a2lu = superlu.factorize (a2) # Factorization

X2 = numpy.zeros (n)
a2.solve (b,x2)
Resolution

alu = umfpack.factorize (a)

Factorization. CSR is not required

+H*

xlu = numpy.zeros (n)
alu.solve (b,xlu) # Resolution

Examples with pysparse library (IV)

Finite elements assembling:

n=29
a = spmatrix.ll mat (n,n)
elements = [[3, 0, 4], [1, 4, 0], [4, 1, 51, \
(2, 5, 11, [6, 3, 71, [4, 7, 31, \
(7, 4, 8], [5, 8, 4]]
mask = [1, 1, 1]
for ef in elements:
aelt = numpy.array \
(rr4., -1., -1.1, [-1., 4., -1.1, [-1., -1., 4.1D)
a3.update_add mask (aelt,ef,ef,mask,mask)

SCIPY sparse module

SciPy allows seven types of sparse matrices:

1.

- LN

> o

7.

csc_matrix: “Compressed Sparse Column”
csr_matrix: “Compressed Sparse Row”
bsr_matrix: block “Sparse Row format”
lil_matrix: “LIst of Lists”

dok_matrix: (“Dictionnary of Keys”)
coo_matrix: “COOrdinate” (tuple format)

dia_matrix: “DIAgonal”

Sparse matrices building:

» We can efficiently build a sparse matrix in 1il matrix format

(recommended) or in dok matrix format

» Then, a conversion to CSC or CSR must be performed

> as lil matrix is row—based, conversion to CSR is more efficient
than conversion to CSC

» All conversions from/to CSR, CSC and COO formats are efficient

SCIPY sparse module

Building a matrix in CSC format:

>>> from scipy import sparse

>>> from numpy import array

>>> I = array([0,3,1,0])

>>> J = array([0,3,1,2])

>>> V = array([4,5,7,9])

>>> A = sparse.coo_matrix((V, (I,J)),shape=(4,4))

SCIPY sparse module

Building a sparse matrix in LIL format and linear system resolution:

In [1]: from scipy import sparse, linsolve
In [2]: from numpy import linalg

In [3]: from numpy.random import rand

In [4]: A = sparse.lil_matrix((10, 10))

In [5]: A[O, :5] = rand(10)

In [6]: A[1, 5:10] = A[0, :5]

In [7]: A.setdiag(rand(10))

In [8]: spy(A,marker=’.’, markersize=8)

In [9]: print A.todense()

We convert the matrix to CSR format and solve by the spsolve command:

In [10]: A = A.tocsr()
In [11]: b = rand(10)
In [12]: x = linsolve.spsolve(A, b)

SCIPY sparse module

We solve heat equation

System resolution
by implicit finite differences C=
z

Asp.tocsc O

with a 3x3 mesh = scipy.linsolve.spsolve (Asp,B)

import numpy as np
from pylab import *
import scipy

from scipy import linalg

z_ = linalg.solve (Asp.todense(),B)

We check the solution is correct
r = linalg.norm (dot(Asp.todense(),z_)-B)

number of points in axes print r

#
N=3

D = 4%np.ones (N*N)

T -np.ones (N*N)

0 = -np.ones (N*N)
TIN-1::N] = 0.

Inverse order in NumPy,
T =T [::-1]

x = np.linspace (-5,5,N)
y = np.linspace (-5,5,N)
X, Y = np.meshgrid (x, y)
Z = zeros ((N,N))

for i in range (0,N):

. . for j in range (0,N):
Asp = scipy.sparse.spdiags Z[i,j] = z[ix(N)+j]
([p,0,T,TT,01, [0,-N,-1,1,N],N*N,N*N) . tocsr ()

We plot the solution
figure (2)

csetl = contourf (X, Y, Z, cmap=cm.get_cmap(’jet’))
title (’Temperature distribution ’)

show ()

We vrite the matrix
print Asp.todense()

figure(1)
spy (Asp,marker=’.’, markersize=8)
show ()

Right hand side vector
B = np.array([75.,75.,175.,0.,0.,100.,50.,50.,150.])
print B

EXCEL files read /write

There are different libraries which allow working with EXCEL files.
For example:

http://www.python-excel.org/

When we open an EXCEL file, we are creating an object of the book
class

» This object has different attributes; for example, its sheets
(which are objects of the sheet class)
» Each sheet has, among others, a name (name), some rows (row),
some columns (col), numbers of rows (nrows) and columns
(ncols), ...

http://www.python-excel.org/

EXCEL files read /write

1| from mmap import mmap

2| from xlrd import open_workbook

3

1|wb = open_workbook (’test.xls’) # We open the book
s| data = [] # We create a list to store the data
7|s = wb.sheets () [0] # We select the first sheet

8

ol print

10| print 7 Sheet: ’, s.name

11| for row in range (s.nrows): # We go through the rows
12 print ' Row: ', row

13 values = []
14 for col in range (s.ncols): # We go through the columns
15 print ’ Column: ’, col

16 values.append (s.cell(row,col).value)
17 # We read the value in the cell and store it
18 data.append (values)

EXCEL files read /write

from tempfile

import TemporaryFile

from xlwt import Workbook, Formula

book = Workbook ()
sheetl = book.add_sheet (’Sheetl’)
book.add_sheet (’Hoja2’)

sheetl.write
sheetl.write
rowl = sheetl

(0,0, A1)
(0,1,°B1")
.row (1)

rowl.write (0, A27)

rowl.write (1

’7B2,)

sheetl.col (0).width = 10000

a = 3.14
b =2
sheetl.write

7| sheetl . write

sheetl . write

(37 07 a)
(37 17 b)
(3, 2, Formula (”A4xB4”))

EXCEL files read /write

1| sheet2 = book.get_sheet (1)

2| sheet2.row (0).write (0, ’Sheet 2 Al’)
3| sheet2.row (0).write (1, ’Sheet 2 Bl’)
| sheet2 . flush_row_data ()

5| sheet2 . write (1, 0, ’Sheet 2 A37)

6| sheet2.col (0).width = 5000

7| sheet2.col (0).hidden = True

9| book.save (’simple.xls”)
10| book.save (TemporaryFile ())

Application: e-mail sending
If we want to send an e-mail, we must:
» connect with the mail server

» providing a login and a password
define the recipient
define the body and the subject of the message
eventually, associate an attached file
send the message (and the attached file)

vV v v v

PYTHON provides some libraries that facilitate these steps

Application: e-mail sending

I R

16

import getpass

print

my_password = getpass.getpass (' Introduce the password:
print

Connection with the UDC mail server.

import smtplib

mailServer = smtplib .SMTP (’smtp.udc.es’, 25)
mailServer.ehlo ()

mailServer.starttls ()

mailServer.ehlo ()

Address from we send the message(s).

mailServer.login (”my_address@Qudc.es”, my_password)

")

Application: e-mail sending

1
2
3
4
5

22

Body of the message.

from email. MIMEMultipart import MIMEMultipart
from email. MIMEText import MIMEText

;| message = u””” Here, we write the body of the message.

We can include line breaks, and non standard characters (
spanish ’tildes’, e\"mnes, ...)”"””

We declare a MIME multipart message.

mensaje = MIMEMultipart ()

mensaje ['From’] = "my_address@Qudc.es”

mensaje [’To’] = recipients[i].encode (’latinl’)

mensaje [Subject’] = u”Subject” .encode (’latinl’)

texto = mensaje

coding = ’latin—1"

mensaje . attach (MIMEText(texto.encode(’latin—1"), _charset=’
latin—17))

Sending.

mailServer.sendmail ("my_address@Qudc.es”, recipients[i],

mensaje.as_string ())
mailServer.close ()

Application: e-mail sending

Exercise:

» read a text file that contains (at least) the name, sex, identity
number and e-mail addresses of a group of persons:

Name0
Namel
Name2
Name3

M
F
F
M

12345670
12345671
12345672
12345673

addressO@Qudc.es
addressl@udc.es
address2@udc.es
address3@udc.es

» send a customized e-mail to each of the previous persons

	Introduction to Python
	Variables and data types
	Tuples and lists
	Dictionaries
	Copy of objects

	Python programming
	Control sentences
	Functions
	Modules
	The standard library
	Input / output
	Exceptions

	Object–oriented programming
	Introduction
	Heritage
	Further topics

	NumPy: Numerical Python
	NumPy basics
	The Matrix object of NumPy
	Polynomials handling in NumPy

	SciPy: Scientific Python
	Linear algebra
	Interpolation
	Numerical integration
	Optimization
	Some financial functions

	Bidimensional graphics with MatPlotLib
	The plot command
	Graphics and axes control
	The subplot and axes commands
	Other 2D graphics commands
	Animations

	Pandas
	Miscelanea
	Sparse matrices
	Excel files read/write
	E–mail sending

