
Deep Joint Learning valuation of Bermudan
Swaptions
Francisco Gómez Casanova, Álvaro Leitao, Fernando de Lope
Contreras and Carlos Vázquez



Motivation and proposal
• In many areas of research requiring intensive scientific computing

tools, there is an increasing use of deep learning and Artificial
Neural Networks (ANN) techniques to overcome the drawbacks
associated to the traditional numerical methods.

• This is also the case in computational finance, where a large
variety of problems related to the pricing and risk management of
(complex) financial products need to be efficiently solved.

• We consider early-exercise products, which are financial contracts
that allow the holder to exercise a right prior to its expiration.

• Many solutions relying on “classical” methods are available,
although multiple (computational) challenges remain posed.

• We propose a smart combination of several sophisticated
ANN-based concepts: differential machine learning, Monte Carlo
sampled training labels and joint learning.

• We also propose a novel design of interdependent ANNs to price
early-exercise products, in this case, Bermudan swaptions.



Outline

1. Problem formulation

2. Deep Joint learning for Bermudan swaptions

3. Numerical experiments

4. Conclusions



Problem formulation
• Linear Gauss Markov (LGM) model:

dxt = α(t)dWt, x0 = 0,

with ζ(t) :=
∫ t

0 α
2(τ)dτ .

• The numeraire under LGM reads

N(t, xt) =
1

D(t) exp
(

H(t)xt +
1
2H2(t)ζ(t)

)
,

with D(t) the discount factor of time t (observed in the market)
• H(t) is a curve with a similar interpretation as the mean reversion

in the Hull-White model:

H(t) = 1 − exp(−κt)
κ

,

such as κ corresponds to the Hull-White mean reversion.



LGM: Analytic pricing formulas
• Zero coupon bond at t with maturity T:

Z(t, xt; T) =
D(T)
D(t) exp

(
−(H(T)− H(t))xt −

1
2 (H

2(T)− H2(t))ζ(t)
)

• Interest Rate Swap (IRS) with payment tenor Ti, i = 1, . . . ,M:

VS(t, xt) = ϕ

(
Z(t, xt; T)− Z(t, xt; TM)− K

M∑
i=1

∆TiZ(t, xt; Ti)

)
• European Swaption (on the previous IRS):

VE(t, xt) = ϕZ(t, xt, T)N
(
−ϕ

y∗
T√

ζ(T)− ζ(t)

)

− ϕZ(t, xt, TM)N

(
−ϕ

y∗
T + (H(TM)− H(T))(ζ(T)− ζ(t))√

ζ(T)− ζ(t)

)

− ϕK
M∑

i=1

∆TiZ(t, xt, Ti)N

(
−ϕ

y∗
T + (H(Ti)− H(T))(ζ(T)− ζ(t))√

ζ(T)− ζ(t)

)



LGM: Bermudan swaptions
• No closed-form solution.
• Valuation of a related product, i.e., Cancellable IRS (cIRS):

Vp
C = Vp

S − Vp
B ,

Vr
C = Vr

S − Vr
B,

• The price of the Cancellable IRS is

Vp
C (t, xt)

N(t, xt)
= sup

τ∈{Ti/Ti>t}
E
[
max

(
Vp

S (τ, xτ )
N(τ, xτ )

,0
)]

,

Vr
C(t, xt)

N(t, xt)
= sup

τ∈{Ti/Ti>t}
E
[
max

(
Vr

S(τ, xτ )
N(τ, xτ )

,0
)]

.

• This formulation enables the use of dynamic programming and
backward induction to determine the optimal cancellation policy
and, then, solve the problem.



Deep learning approach for
Cancellable IRS

• We smartly combine three (individually) successful ANN
components:

• Differential Machine Learning → DANN
• Training with sampled labels
• Joint learning

• Cancellation policy: sequence of interconnected DANNs.
• Each DANN, associated with a cancellation opportunity, is used

(once trained) to compute the labels of the next DANN.
• Then, the labels for the DANN of each cancellation opportunity

depends on the estimations of all the “previous” DANNs.
• This specific design gets inspiration from the classical methods

based on regression.
• An additional DANN approximates the final price given a newly

generated samples, using joint learning feature.



Differential Machine Learning
(DANN)

• Enlarge the network to consider (benefit from) the differentials of
the output w.r.t the inputs.

• It requires the availability of those differentials.
• The loss function needs to incorporate both components.

Differential Machine Learning with ANNs.



Backward DANNs
• Recursive DANN structured design.

Sequence of DANNs encapsulating the exercise policy.



Sampled (labels) payoffs

• Training the DANNs with highly noisy labels.

• The differential labels (also noisy) are obtained by AAD.

(a) t = 7 (b) t = 4 (c) t = 1
Sampled payoffs and Backward DANN approximation



Joint learning
• It is employed in the computation of the final price.
• Not only the cIRS is estimated, but also extra related products.
• Here, a set of European swaptions whose maturities coincide with

each of the cancellation times (coterminal swaptions).
• Why? The Bermudan derivatives can be seen as a combination of

a number of their European counterparts.
• Further, the values of the European coterminal swaptions are

often available in closed-form for many models (LGM).
• The last aspect is of great importance: while the labels for the

cIRS are noisy prices (sampled payoffs), the labels/prices for the
coterminal European swaptions are the ground truth.

• Intuitively, adding labels with exact (non-noisy) values should
help to improve the estimations provided by the whole DANN (at
a prescribed training time budget), besides more quantities need
to be predicted, boosted by the joint learning effect.



Joint learning (with DANNs)

DANN structure considering multiple outputs, i.e., integrating the joint
learning approach.



Training set generation (I)
• Two aspects have a paramount importance: the domain of the

input space and the sampling distribution within that domain.
• The first depends on the problem at hand, so the domain in

derivative’s valuation is often selected based on the observed
market behaviour (past, present and future) or experience.

• The second aspect is trickier since, although a uniform
distribution seems often appropriate, an smart sampling taking
into account other factors like regions of more interest or with
more error might provide a significant prediction improvement of
the ANN model (given a training time budget).

• Also the relation between the model and market parameters is an
important aspect to be exploited, which can be employed to
avoid regions that represent unrealistic financial situations.

• Once the inputs are generated, one single Monte Carlo path is
simulated to evolve the LGM model.



Training set generation (II)
• Mean reversion, κ = U(lκ,uκ).
• Discount factors: interest rate curves → discount curves

R(t) = β0G0(t) + β1G1(t) + β2G2(t),

where

β0 = U(l0,u0), β1 = U(l1,u1), β2 = U(l2,u2), τ = U(lτ ,uτ ).

The discount curve is constructed as D(t) = exp
(
−
∫ t

0 R(s)ds
)
.

• Fixed rate. The fixed rate K, is perturbed from the ATM level:

K = ATM +∆K,

where
ATM =

1 − D(TM)∑M
i=1 ∆TiD(Ti)

,

with ∆K ∈ U(lK,uK).



Training set generation (III)
• LGM volatility, α: assumed to be a piecewise constant function of

the time with a dependency on κ (as observed in the market).
• How? First, Rebonato’s parameterization

h(t) = (a + bt) exp (−ct) + d

Then, we choose implied volatilities as Σj = h
(

tj−1+tj
2

)
• As Σ2

j ∆tj = α2
j
∫ tj

tj−1
exp

(
−2κ(tj − s)

)
ds, then α2

j = 2κ Σ2
j ∆tj

1−exp(−κ∆tj)

• Finally,

α(t) =


α1, t ∈ (t0, t1],
α2, t ∈ (t1, t2],

...
...

αJ, t ∈ (tJ−1, tJ].

• The values of the Rebonato’s model parameters are sampled by

a = U(la,ua), b = U(lb,ub), c = U(lc,uc), d = U(ld,ud).



Training set generation (IV)

(a) t = 1. (b) t = 4.

(c) t = 7. (d) t = 10.
Histograms of the discount factors at different time instants.



Training set generation (and V)

(a) α1. (b) α2.

(c) α3. (d) α4.
Histograms of the volatilites.



Numerical experiments
• Incremental testing in terms of the inputs’ domain.

• The results are presented in the form of differences’ histograms,
including an interquantile confidence interval.

• The ground truth values (prices of cIRS) of the validation set are
computed by a highly converged Monte Carlo pricer (acc: ∼ 1 bp)

• ANNs’ hyperparameters configuration:

Hyperparameter Value
Layers 4

Neurons 32
Epochs 128

Batch size 4096



Test base cases
Test Case I Test Case II
lκ = −0.05, uκ = 0.1 lκ = −0.05, uκ = 0.1
la = −10−5, ua = 10−5 la = 10−5, ua = 0.0075
lb = −10−5, ub = 10−5 lb = 0, ub = 0.0005
lc = −10−5, uc = 10−5 lc = 0, uc = 0.25
ld = 0.0075 − 10−5, ud = 0.0075 + 10−5 ld = 10−5, ud = 0.0075
l0 = 0.02 − 10−5, u0 = 0.02 + 10−5 l0 = 0.02 − 10−5, u0 = 0.02 + 10−5

l1 = −10−5, u1 = 10−5 l1 = −10−5, u1 = 10−5

l2 = −10−5, u2 = 10−5 l2 = −10−5, u2 = 10−5

lτ = 1 − 10−5, uτ = 1 + 10−5 lτ = 1 − 10−5, uτ = 1 + 10−5

lK = −10−5, uK = 10−5 lK = −10−5, uK = 10−5

Test Case III Test Case IV
lκ = −0.05, uκ = 0.1 lκ = −0.05, uκ = 0.1
la = 10−5, ua = 0.0075 la = 10−5, ua = 0.0075
lb = 0, ub = 0.0005 lb = 0, ub = 0.0005
lc = 0, uc = 0.25 lc = 0, uc = 0.25
ld = 10−5, ud = 0.0075 ld = 10−5, ud = 0.0075
l0 = −0.005, u0 = 0.05 l0 = −0.005, u0 = 0.05
l1 = 0, u1 = 0.001 l1 = 0, u1 = 0.001
l2 = 0, u2 = 0.01 l2 = 0, u2 = 0.01
lτ = 0.01, uτ = 2 lτ = 0.01, uτ = 2
lK = −10−5, uK = 10−5 lK = −0.01, uK = 0.01



Impact of joint learning (I)

(a) (Q10Q90) = (−5.7, 7.0). (b) (Q10,Q90) = (−0.8, 1.4).

Pricing differences in basis points of Test Case I: Plain DANN (left) and
DANN with joint learning (right).



Impact of joint learning (II)

(a) (Q10,Q90) = (−6.0, 5.7). (b) (Q10,Q90) = (−1.0, 3.7).

Pricing differences in basis points of Test Case II: Plain DANN (left) and
DANN with joint learning (right).



Impact of joint learning (III)

(a) (Q10,Q90) = (−10.0, 12.4). (b) (Q10,Q90) = (−1.9, 5.1).

Pricing differences in basis points of Test Case III: Plain DANN (left) and
DANN with joint learning (right).



Impact of joint learning (IV)

(a) (Q10,Q90) = (−8.1, 7.4). (b) (Q10,Q90) = (−4.8, 2.5).

Pricing differences in basis points of Test Case IV: Plain DANN (left) and
DANN with joint learning (right).



Impact of joint learning (IV)
• In all cases the differences’ distributions are centered at cero,

thus indicating that the DANN predictions do not present bias.
• The incorporation of the inputs related with the discount factors

and the volatility seems to make the solution to be approximated
more challenging.

• When the strike spread is included (test case IV) the DANN
provides slightly better estimations. Although this might seem
counterintuitive, that behavior appears due to the effect of the
strikes far from ATM level (particularly those more in-the-money).
This effect is implicitly present in the histograms, where a certain
skewness is observed (more clearly visible in the case employing
joint learning.

• An impressive (and general) reduction of the error thanks to the
joint learning approach is achieved, where both the average error
and the interquantile interval are, at least, halved.



Impact of number of samples
and MC paths/sample (I)

Plain DANN: Columns: nf = 222 (left), nf = 223 (central), nf = 224 (right);
Rows: nMC = 1 (top), nMC = 4 (middle), nMC = 16 (bottom).



Impact of number of samples
and MC paths/sample (II)

Joint DANN: Columns: nf = 222 (left), nf = 223 (central), nf = 224 (right);
Rows: nMC = 1 (top), nMC = 4 (middle), nMC = 16 (bottom).



Impact of number of samples
and MC paths/sample (and III)

• As expected, systematically increase the number of samples
provided to the DANN improves the predictions, although the
reduction of the interquantile intervals, i.e., in the deviations’
variance, is rather limited.

• In contrast to the previous point, we again observe that the DANN
trained relying on the joint learning approach provides more
accurate estimations, significantly reducing the variance.

• The effect of including more Monte Carlo paths per sample
presents the expected behavior, i.e., when the number of paths is
multiplied by four the error is approximately halved (according to
the theoretical convergence rate of Monte Carlo methods, n−1/2).

• When most of the differences fall below ±3 basis points, a certain
level of saturation is observed meaning that considering either
more samples or more Monte Carlo paths per sample no longer
reduces the deviations in the predictions (or the reduction results
to be negligible).



Conclusions
• An innovative solution for the Bermudan swaption valuation

based on advanced deep learning techniques has been proposed.

• Additional very relevant components have been added on top of
classical ANN approach.

• Some are appropriate adaptations of existing ideas: sampled
(labels) payoffs and differential machine learning.

• Novel training strategy in quantitative finance: the joint learning.

• The idea behind our joint learning approach is to incorporate
“similar” financial products as outputs, aiming that they help in
the training process to reach more accurate solutions for complex
derivatives at less/similar computational cost.

• Throughout several experiments, the advantages of using the
proposed joint learning-based training have been highlighted.



References

[1] Patrick S. Hagan. Evaluating and hedging exotic swap
instruments via LGM. Available at ResearchGate. 2002.

[2] Brian Huge and Antoine Savine. Differential machine
learning. Available at ArXiv: 2005.02347. 2020.

[3] Francisco Gómez Casanova et al. Deep Joint Learning
valuation of Bermudan Swaptions. Available at ArXiv:
2404.11257. 2024.



Acknowledgements & Questions

Thanks to the support of Centre for Information and Communications
Technology Research (CITIC). CITIC is funded by the Xunta de Galicia through
the collaboration agreement between the Consellería de Cultura, Educación,
Formación Profesional e Universidades and the Galician universities for the
reinforcement of the research centres of the Galician University System (CIGUS).

More: alvaroleitao.github.io

Eskerrik asko!



•


	Problem formulation
	Deep Joint learning for Bermudan swaptions
	Numerical experiments
	Conclusions
	References
	appendix

